Кислород газ. Свойства, добыча, применение и цена кислорода. Химические и физические свойства, применение и получение кислорода

План:

    История открытия

    Происхождение названия

    Нахождение в природе

    Получение

    Физические свойства

    Химические свойства

    Применение

10. Изотопы

Кислород

Кислоро́д - элемент 16-й группы (по устаревшей классификации - главной подгруппы VI группы), второго периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 8. Обозначается символом O(лат. Oxygenium). Кислород - химически активный неметалл, является самым лёгким элементом из группы халькогенов. Простое вещество кислород (CAS-номер: 7782-44-7) при нормальных условиях - газ без цвета, вкуса и запаха, молекула которого состоит из двух атомов кислорода (формула O 2), в связи с чем его также называют дикислород.Жидкий кислород имеет светло-голубой цвет, а твёрдый представляет собой кристаллы светло-синего цвета.

Существуют и другие аллотропные формы кислорода, например, озон (CAS-номер: 10028-15-6) - при нормальных условиях газ голубого цвета со специфическим запахом, молекула которого состоит из трёх атомов кислорода (формула O 3).

    История открытия

Официально считается, что кислород был открыт английским химиком Джозефом Пристли 1 августа 1774 года путём разложения оксида ртути в герметично закрытом сосуде (Пристли направлял на это соединение солнечные лучи с помощью мощной линзы).

Однако Пристли первоначально не понял, что открыл новое простое вещество, он считал, что выделил одну из составных частей воздуха (и назвал этот газ «дефлогистированным воздухом»). О своём открытии Пристли сообщил выдающемуся французскому химику Антуану Лавуазье. В 1775 году А. Лавуазье установил, что кислород является составной частью воздуха, кислот и содержится во многих веществах.

Несколькими годами ранее (в 1771 году) кислород получил шведский химик Карл Шееле. Он прокаливал селитру с серной кислотой и затем разлагал получившийся оксид азота. Шееле назвал этот газ «огненным воздухом» и описал своё открытие в изданной в 1777 году книге (именно потому, что книга опубликована позже, чем сообщил о своём открытии Пристли, последний и считается первооткрывателем кислорода). Шееле также сообщил о своём опыте Лавуазье.

Важным этапом, который способствовал открытию кислорода, были работы французского химика Пьера Байена, который опубликовал работы по окислению ртути и последующему разложению её оксида.

Наконец, окончательно разобрался в природе полученного газа А. Лавуазье, воспользовавшийся информацией от Пристли и Шееле. Его работа имела громадное значение, потому что благодаря ей была ниспровергнута господствовавшая в то время и тормозившая развитие химии флогистонная теория. Лавуазье провёл опыт по сжиганию различных веществ и опроверг теорию флогистона, опубликовав результаты по весу сожженных элементов. Вес золы превышал первоначальный вес элемента, что дало Лавуазье право утверждать, что при горении происходит химическая реакция (окисление) вещества, в связи с этим масса исходного вещества увеличивается, что опровергает теорию флогистона.

Таким образом, заслугу открытия кислорода фактически делят между собой Пристли, Шееле и Лавуазье.

    Происхождение названия

Слово кислород (именовался в начале XIX века ещё «кислотвором») своим появлением в русском языке до какой-то степени обязано М. В. Ломоносову, который ввёл в употребление, наряду с другими неологизмами, слово «кислота»; таким образом слово «кислород», в свою очередь, явилось калькой термина «оксиген» (фр. oxygène), предложенного А. Лавуазье (от др.-греч. ὀξύς - «кислый» и γεννάω - «рождаю»), который переводится как «порождающий кислоту», что связано с первоначальным значением его - «кислота», ранее подразумевавшим вещества, именуемые по современной международной номенклатуре оксидами.

    Нахождение в природе

Кислород - самый распространённый на Земле элемент, на его долю (в составе различных соединений, главным образом силикатов) приходится около 47,4 % массы твёрдой земной коры. Морские и пресные воды содержат огромное количество связанного кислорода - 88,8 % (по массе), в атмосфере содержание свободного кислорода составляет 20,95 % по объёму и 23,12 % по массе. Более 1500 соединений земной коры в своём составе содержат кислород.

Кислород входит в состав многих органических веществ и присутствует во всех живых клетках. По числу атомов в живых клетках он составляет около 25 %, по массовой доле - около 65 %.

    Получение

В настоящее время в промышленности кислород получают из воздуха. Основным промышленным способом получения кислорода, является криогенная ректификация. Также хорошо известны и успешно применяются в промышленности кислородные установки, работающие на основе мембранной технологии.

В лабораториях пользуются кислородом промышленного производства, поставляемым в стальных баллонах под давлением около 15 МПа.

Небольшие количества кислорода можно получать нагреванием перманганата калия KMnO 4:

Используют также реакцию каталитического разложения пероксида водорода Н 2 О 2 в присутствии оксида марганца(IV):

Кислород можно получить каталитическим разложением хлората калия (бертолетовой соли) KClO 3:

К лабораторным способам получения кислорода относится метод электролиза водных растворов щелочей, а также разложение оксида ртути(II) (при t = 100 °C):

На подводных лодках обычно получается реакцией пероксида натрия и углекислого газа, выдыхаемого человеком:

    Физические свойства

В мировом океане содержание растворённого O 2 больше в холодной воде, а меньше - в тёплой.

При нормальных условиях кислород - это газ без цвета, вкуса и запаха.

1 л его имеет массу 1,429 г. Немного тяжелее воздуха. Слабо растворяется в воде (4,9 мл/100 г при 0 °C, 2,09 мл/100 г при 50 °C) и спирте (2,78 мл/100 г при 25 °C). Хорошо растворяется в расплавленном серебре(22 объёма O 2 в 1 объёме Ag при 961 °C). Межатомное расстояние - 0,12074 нм. Является парамагнетиком.

При нагревании газообразного кислорода происходит его обратимая диссоциация на атомы: при 2000 °C - 0,03 %, при 2600 °C - 1 %, 4000 °C - 59 %, 6000 °C - 99,5 %.

Жидкий кислород (температура кипения −182,98 °C) - это бледно-голубая жидкость.

Фазовая диаграмма O 2

Твёрдый кислород (температура плавления −218,35°C) - синие кристаллы. Известны 6 кристаллических фаз, из которых три существуют при давлении в 1 атм.:

    α-О 2 - существует при температуре ниже 23,65 К; ярко-синие кристаллы относятся к моноклинной сингонии, параметры ячейки a=5,403 Å, b=3,429 Å, c=5,086 Å; β=132,53°.

    β-О 2 - существует в интервале температур от 23,65 до 43,65 К; бледно-синие кристаллы (при повышении давления цвет переходит в розовый) имеют ромбоэдрическую решётку, параметры ячейки a=4,21 Å,α=46,25°.

    γ-О 2 - существует при температурах от 43,65 до 54,21 К; бледно-синие кристаллы имеют кубическую симметрию, период решётки a=6,83 Å.

Ещё три фазы образуются при высоких давлениях:

    δ-О 2 интервал температур 20-240 К и давление 6-8 ГПа, оранжевые кристаллы;

    ε-О 4 давление от 10 и до 96 ГПа, цвет кристаллов от тёмно-красного до чёрного, моноклинная сингония;

    ζ-О n давление более 96 ГПа, металлическое состояние с характерным металлическим блеском, при низких температурах переходит в сверхпроводящее состояние.

    Химические свойства

Сильный окислитель, взаимодействует практически со всеми элементами, образуя оксиды. Степень окисления −2. Как правило, реакция окисления протекает с выделением тепла и ускоряется при повышении температуры (см. Горение). Пример реакций, протекающих при комнатной температуре:

Окисляет соединения, которые содержат элементы с не максимальной степенью окисления:

Окисляет большинство органических соединений:

При определённых условиях можно провести мягкое окисление органического соединения:

Кислород реагирует непосредственно (при нормальных условиях, при нагревании и/или в присутствии катализаторов) со всеми простыми веществами, кроме Au и инертных газов (He, Ne, Ar, Kr, Xe, Rn); реакции с галогенами происходят под воздействием электрического разряда или ультрафиолета. Косвенным путём получены оксиды золота и тяжёлых инертных газов (Xe, Rn). Во всех двухэлементных соединениях кислорода с другими элементами кислород играет роль окислителя, кроме соединений со фтором

Кислород образует пероксиды со степенью окисления атома кислорода, формально равной −1.

Например, пероксиды получаются при сгорании щелочных металлов в кислороде:

Некоторые оксиды поглощают кислород:

По теории горения, разработанной А. Н. Бахом и К. О. Энглером, окисление происходит в две стадии с образованием промежуточного пероксидного соединения. Это промежуточное соединение можно выделить, например, при охлаждении пламени горящего водорода льдом, наряду с водой, образуется пероксид водорода:

В надпероксидах кислород формально имеет степень окисления −½, то есть один электрон на два атома кислорода (ион O − 2). Получают взаимодействием пероксидов с кислородом при повышенных давлении и температуре:

Калий K, рубидий Rb и цезий Cs реагируют с кислородом с образованием надпероксидов:

В ионе диоксигенила O 2 + кислород имеет формально степень окисления +½. Получают по реакции:

Фториды кислорода

Дифторид кислорода, OF 2 степень окисления кислорода +2, получают пропусканием фтора через раствор щелочи:

Монофторид кислорода (Диоксидифторид), O 2 F 2 , нестабилен, степень окисления кислорода +1. Получают из смеси фтора с кислородом в тлеющем разряде при температуре −196 °C:

Пропуская тлеющий разряд через смесь фтора с кислородом при определённых давлении и температуре, получают смеси высших фторидов кислорода O 3 F 2 , О 4 F 2 , О 5 F 2 и О 6 F 2 .

Квантовомеханические расчёты предсказывают устойчивое существование иона трифторгидроксония OF 3 + . Если этот ион действительно существует, то степень окисления кислорода в нём будет равна +4.

Кислород поддерживает процессы дыхания, горения, гниения.

В свободном виде элемент существует в двух аллотропных модификациях: O 2 и O 3 (озон). Как установили в 1899 году Пьер Кюри и Мария Склодовская-Кюри, под воздействием ионизирующего излучения O 2 переходит в O 3 .

    Применение

Широкое промышленное применение кислорода началось в середине XX века, после изобретения турбодетандеров - устройств для сжижения и разделения жидкого воздуха.

В металлургии

Конвертерный способ производства стали или переработки штейнов связан с применением кислорода. Во многих металлургических агрегатах для более эффективного сжигания топлива вместо воздуха в горелках используют кислородно-воздушную смесь.

Сварка и резка металлов

Кислород в баллонах голубого цвета широко используется для газопламенной резки и сварки металлов.

Ракетное топливо

В качестве окислителя для ракетного топлива применяется жидкий кислород, пероксид водорода, азотная кислота и другие богатые кислородом соединения. Смесь жидкого кислорода и жидкого озона - один из самых мощных окислителей ракетного топлива (удельный импульс смеси водород - озон превышает удельный импульс для пары водород-фтор и водород-фторид кислорода).

В медицине

Медицинский кислород хранится в металлических газовых баллонах высокого давления (для сжатых или сжиженных газов) голубого цвета различной ёмкости от 1,2 до 10,0 литров под давлением до 15 МПа (150 атм) и используется для обогащения дыхательных газовых смесей в наркозной аппаратуре, при нарушении дыхания, для купирования приступа бронхиальной астмы, устранения гипоксии любого генеза, при декомпрессионной болезни, для лечения патологии желудочно-кишечного тракта в виде кислородных коктейлей. Для индивидуального применения медицинским кислородом из баллонов заполняют специальные прорезиненные ёмкости - кислородные подушки. Для подачи кислорода или кислородо-воздушной смеси одновременно одному или двум пострадавшим в полевых условиях или в условиях стационара применяются кислородные ингаляторы различных моделей и модификаций. Достоинством кислородного ингалятора является наличие конденсатора-увлажнителя газовой смеси, использующего влагу выдыхаемого воздуха. Для расчёта оставшегося в баллоне количества кислорода в литрах обычно величину давления в баллоне в атмосферах (по манометру редуктора) умножают на величину ёмкости баллона в литрах. Например, в баллоне вместимостью 2 литра манометр показывает давление кислорода 100 атм. Объём кислорода в этом случае равен 100 × 2 = 200 литров.

В пищевой промышленности

В пищевой промышленности кислород зарегистрирован в качестве пищевой добавки E948, как пропеллент и упаковочный газ.

В химической промышленности

В химической промышленности кислород используют как реактив-окислитель в многочисленных синтезах, например, - окисления углеводородов в кислородсодержащие соединения (спирты, альдегиды, кислоты), аммиака в оксиды азота в производстве азотной кислоты. Вследствие высоких температур, развивающихся при окислении, последние часто проводят в режиме горения.

В сельском хозяйстве

В тепличном хозяйстве, для изготовления кислородных коктейлей, для прибавки в весе у животных, для обогащения кислородом водной среды в рыбоводстве.

    Биологическая роль кислорода

Аварийный запас кислорода в бомбоубежище

Большинство живых существ (аэробы) дышат кислородом воздуха. Широко используется кислород в медицине. При сердечно-сосудистых заболеваниях, для улучшения обменных процессов, в желудок вводят кислородную пену («кислородный коктейль»). Подкожное введение кислорода используют при трофических язвах, слоновости, гангрене и других серьёзных заболеваниях. Для обеззараживания и дезодорации воздуха и очистки питьевой воды применяют искусственное обогащение озоном. Радиоактивный изотоп кислорода 15 O применяется для исследований скорости кровотока, лёгочной вентиляции.

    Токсические производные кислорода

Некоторые производные кислорода (т. н. реактивные формы кислорода), такие как синглетный кислород, пероксид водорода, супероксид, озон и гидроксильный радикал, являются высокотоксичными продуктами. Они образуются в процессе активирования или частичного восстановления кислорода. Супероксид (супероксидный радикал), пероксид водорода и гидроксильный радикал могут образовываться в клетках и тканях организма человека и животных и вызывают оксидативный стресс.

    Изотопы

Кислород имеет три устойчивых изотопа: 16 О, 17 О и 18 О, среднее содержание которых составляет соответственно 99,759 %, 0,037 % и 0,204 % от общего числа атомов кислорода на Земле. Резкое преобладание в смеси изотопов наиболее лёгкого из них 16 О связано с тем, что ядро атома 16 О состоит из 8 протонов и 8 нейтронов (дважды магическое ядро с заполненными нейтронной и протонной оболочками). А такие ядра, как следует из теории строения атомного ядра, обладают особой устойчивостью.

Также известны радиоактивные изотопы кислорода с массовыми числами от 12 О до 24 О. Все радиоактивные изотопы кислорода имеют малый период полураспада, наиболее долгоживущий из них 15 O с периодом полураспада ~120 с. Наиболее краткоживущий изотоп 12 O имеет период полураспада 5,8·10 −22 с.

Кислород О имеет атомный номер 8, расположен в главной подгруппе (подгруппе а) VI группе, во втором периоде. В атомах кислорода валентные электроны размещаются на 2-м энергетическом уровне, имеющем только s — и p -орбитали. Это исключает возможность перехода атомов О в возбуждённое состояние, поэтому кислород во всех соединениях проявляет постоянную валентность, равную II. Имея высокую электроотрицательность, атомы кислорода всегда в соединениях заряжены отрицательно (с.о. = -2 или -1). Исключение – фториды OF 2 и O 2 F 2 .

Для кислорода известны степени окисления -2, -1, +1, +2

Общая характеристика элемента

Кислород – самый распространенный элемент на Земле, на его долю приходится чуть меньше половины, 49 % от общей массы земной коры. Природный кислород состоит из 3 стабильных изотопов 16 О, 17 О и 18 О (преобладает 16 О). Кислород входит в состав атмосферы (20,9 % по объему, 23,2 по массе), в состав воды и более 1400 минералов: кремнезема, силикатов и алюмосиликатов, мраморов, базальтов, гематита и других минералов и горных пород. Кислород составляет 50-85% массы тканей растений и животных, т.к содержится в белках, жирах и углеводах, из которых состоят живые организмы. Общеизвестна роль кислорода для дыхания, для процессов окисления.

Кислород сравнительно мало растворим в воде – 5 объемов в 100 объемах воды. Однако, если бы весь растворенный в воде кислород перешел в атмосферу, то он занял бы огромный объем – 10 млн км 3 (н.у). Это равно примерно 1% всего кислорода в атмосфере. Образование на земле кислородной атмосферы обусловлено процессами фотосинтеза.

Открыт шведом К. Шееле (1771 – 1772 г.г) и англичанином Дж. Пристли (1774г.). Первый использовал нагревание селитры, второй – оксида ртути (+2). Название дал А.Лавуазье («оксигениум» - «рождающий кислоты»).

В свободном виде существует в двух аллотропных модификациях – «обыкновенного» кислорода О 2 и озона О 3 .

Строение молекулы озона

3О 2 = 2О 3 – 285 кДж
Озон в стратосфере образует тонкий слой, который поглощает большую часть биологически вредного ультрафиолетового излучения.
При хранении озон самопроизвольно превращается в кислород. Химически кислород О 2 менее активен, чем озон. Электроотрицательность кислорода 3,5.

Физические свойства кислорода

O 2 – газ без цвета, запаха и вкуса, т.пл. –218,7 °С, т.кип. –182,96 °С, парамагнитен.

Жидкий O 2 голубого, твердый – синего цвета. O 2 растворим в воде (лучше, чем азот и водород).

Получение кислорода

1. Промышленный способ — перегонка жидкого воздуха и электролиз воды:

2Н 2 О → 2Н 2 + О 2

2. В лаборатории кислород получают:
1.Электролизом щелочных водных растворов или водных растворов кислородосодержащих солей (Na 2 SO 4 и др.)

2. Термическим разложением перманганата калия KMnO 4:
2KMnO 4 = K 2 MnO4 + MnO 2 + O 2 ,

Бертолетовой соли KClO 3:
2KClO 3 = 2KCl + 3O 2 (катализатор MnO 2)

Оксида марганца (+4) MnO 2:
4MnO 2 = 2Mn 2 O 3 + O 2 (700 o C),

3MnO 2 = 2Mn 3 O 4 + O 2 (1000 o C),

Пероксид бария BaO 2:
2BaO 2 = 2BaO + O 2

3. Разложением пероксида водорода:
2H 2 O 2 = H 2 O + O 2 (катализатор MnO 2)

4. Разложение нитратов:
2KNO 3 → 2KNO 2 + O 2

На космических кораблях и подводных лодках кислород получают из смеси K 2 O 2 и K 2 O 4:
2K 2 O 4 + 2H 2 O = 4KOH +3O 2
4KOH + 2CO 2 = 2K 2 CO 3 + 2H 2 O

Суммарно:
2K 2 O 4 + 2CO 2 = 2K 2 CO 3 + 3О 2

Когда используют K 2 O 2 , то суммарная реакция выглядит так:
2K 2 O 2 + 2CO 2 = 2K 2 CO 3 + O 2

Если смешать K 2 O 2 и K 2 O 4 в равномолярных (т.е. эквимолярных) количествах, то на 1 моль поглощенного СО 2 выделится один моль О 2.

Химические свойства кислорода

Кислород поддерживает горение. Горение — б ыстрый процесс окисления вещества, сопровождающийся выделением большого количества теплоты и света. Чтобы доказать, что в склянке находится кислород, а не какой-то другой газ, надо в склянку опустить тлеющую лучинку. В кислороде тлеющая лучинка ярко вспыхивает. Горение различных веществ на воздухе – это окислительно-восстановительный процесс, в котором окислителем является кислород. Окислители – это вещества, «отбирающие» электроны у веществ-восстановителей. Хорошие окислительные свойства кислорода можно легко объяснить строением его внешней электронной оболочки.

Валентная оболочка кислорода расположена на 2-м уровне – относительно близко к ядру. Поэтому ядро сильно притягивает к себе электроны. На валентной оболочке кислорода 2s 2 2p 4 находится 6 электронов. Следовательно, до октета недостает двух электронов, которые кислород стремится принять с электронных оболочек других элементов, вступая с ними в реакции в качестве окислителя.

Кислород имеет вторую (после фтора) электроотрицательность в шкале Полинга. Поэтому в подавляющем большинстве своих соединений с другими элементами кислород имеет отрицательную степень окисления. Более сильным окислителем, чем кислород, является только его сосед по периоду – фтор. Поэтому соединения кислорода с фтором – единственные, где кислород имеет положительную степень окисления.

Итак, кислород – второй по силе окислитель среди всех элементов Периодической системы. С этим связано большинство его важнейших химических свойств.
С кислородом реагируют все элементы, кроме Au, Pt, He, Ne и Ar, во всех реакциях (кроме взаимодействия со фтором) кислород — окислитель.

Кислород легко реагирует с щелочными и щелочноземельными металлами:

4Li + O 2 → 2Li 2 O,

2K + O 2 → K 2 O 2 ,

2Ca + O 2 → 2CaO,

2Na + O 2 → Na 2 O 2 ,

2K + 2O 2 → K 2 O 4

Мелкий порошок железа (так называемого пирофорного железа) самовоспламеняется на воздухе, образуя Fe 2 O 3 , а стальная проволока горит в кислороде, если ее заранее раскалить:

3 Fe + 2O 2 → Fe 3 O 4

2Mg + O 2 → 2MgO

2Cu + O 2 → 2CuO

С неметаллами (серой, графитом, водородом, фосфором и др.) кислород реагирует при нагревании:

S + O 2 → SO 2 ,

C + O 2 → CO 2 ,

2H 2 + O 2 → H 2 O,

4P + 5O 2 → 2P 2 O 5 ,

Si + O 2 → SiO 2 , и т.д

Почти все реакции с участием кислорода O 2 экзотермичны, за редким исключением, например:

N 2 + O 2 2NO – Q

Эта реакция протекает при температуре выше 1200 o C или в электрическом разряде.

Кислород способен окислить сложные вещества, например:

2H 2 S + 3O 2 → 2SO 2 + 2H 2 O (избыток кислорода),

2H 2 S + O 2 → 2S + 2H 2 O (недостаток кислорода),

4NH 3 + 3O 2 → 2N 2 + 6H 2 O (без катализатора),

4NH 3 + 5O 2 → 4NO + 6H 2 O (в присутствии катализатора Pt),

CH 4 (метан) + 2O 2 → CO 2 + 2H 2 O,

4FeS 2 (пирит) + 11O 2 → 2Fe 2 O 3 + 8SO 2 .

Известны соединения, содержащие катион диоксигенила O 2 + , например, O 2 + — (успешный синтез этого соединения побудил Н. Бартлетта попытаться получить соединения инертных газов).

Озон

Озон химически более активен, чем кислород O 2 . Так, озон окисляет иодид - ионы I — в растворе Kl:

O 3 + 2Kl + H 2 O = I 2 + O 2 + 2KOH

Озон сильно ядовит, его ядовитые свойства сильнее, чем, например, у сероводорода. Однако в природе озон, содержащийся в высоких слоях атмосферы, выполняет роль защитника всего живого на Земле от губительного ультрафиолетового излучения солнца. Тонкий озоновый слой поглощает это излучение, и оно не достигает поверхности Земли. Наблюдаются значительные колебания в толщине и протяженности этого слоя с течением времени (так называемые озоновые дыры) причины таких колебаний пока не выяснены.

Применение кислорода O 2: для интенсификации процессов получения чугуна и стали, при выплавке цветных металлов, как окислитель в различных химических производствах, для жизнеобеспечения на подводных кораблях, как окислитель ракетного топлива (жидкий кислород), в медицине, при сварке и резке металлов.

Применение озона О 3: для обеззараживания питьевой воды, сточных вод, воздуха, для отбеливания тканей.

Для получения кислорода , потребуются вещества, которые им богаты. Это пероксиды, селитры, хлораты. Мы будем использовать те, что можно достать без особого труда.

Для получения кислорода в домашних условиях есть несколько способов, разберём их по-порядку.

Самый простой и доступный способ получения кислорода – использовать марганцовку (или более правильное название – перманганат калия). Всем известно, что марганцовка – прекрасный антисептик, используется в качестве обеззараживающего вещества. Если её нет, то можно приобрести в аптеке.

Поступим так. В пробирку насыпаем немного марганцовки, закроем пробиркой с отверстием, в отверстие установим газоотводную трубку (по ней будет идти кислород). Другой конец трубки поместим в другую пробирку (она должна располагаться вверх дном, так как выделяющийся кислород легче воздуха и будет подниматься вверх. Такой же пробкой закром вторую пробирку.
В итоге у нас должно получиться две пробирки, соединённые между собой газоотводной трубкой через пробки. В одной (неперевёрнутой) пробирке - марганцовка. Будем нагревать пробирку с марганцовкой. Тёмно-фиолетово-вишнёвый цвет кристалликов марганцовки исчезнет и превратится в тёмно-зелёные кристаллы манганата калия.

Реакция протекает так:

2KMnO 4 → MnO 2 + K 2 MnO 4 +O 2

Так из 10 грамм марганцовки можно получить почти 1 литр кислорода. Через пару минут можно извлечь колбу с марганцовкой из пламени. Мы получили кислород в перевёрнутой пробирке. Можем его проверить. Для этого аккуратно отсоединим вторую трубку (с кислородом) от газоотводной трубки, прикрыв отверстие пальцем. Теперь, если внести слабо горящую спичку в колбу с кислородом, то она ярко вспыхнет!

Получение кислорода возможно также с помощью натриевой или калиевой селитры (соответствующие соли натрия и калия азотной кислоты).
(Нитраты калия и натрия – они же – селитры, продаются на магазинах для удобрений).

Итак, для получения кислорода из селитры возьмём пробирку из тугоплавкого стекла на штативе, поместим туда селитровый порошок (5 грамм будет достаточно).Потребуется под пробирку поставить керамическую чашечку с песком, та как стекло может расплавиться от температуры и потечь. Следовательно, горелку надо будет держать немного сбоку, а пробирку с селитрой – под наклоном.

При сильном нагреве селитры она начинает плавиться, при этом выделяется кислород. Реакция проходит так:

2KNO 3 → 2KNO 2 +O 2

Образующееся вещество – нитрит калия (или натрия, смотря, какая селитра использована) – соль азотистой кислоты.

Ещё один способ получения кислорода – использовать перекись водорода. Пероксид, гидроперит – всё одно и то же вещество. Перекись водорода продаётся в таблетках и в виде растворов (3%, 5%, 10%), которое можно приобрести в аптеке.

В отличии от предыдущих веществ, селитр или марганцовки, перекись водорода – неустойчивое вещество. Уже при наличии света она начинает распадаться на кислород и воду. Поэтому в аптеках перекись продаётся в пузырьках из тёмного стекла.

Кроме того, быстрому разложению перекиси водорода на воду и кислород способствуют катализаторы, например, оксид марганца, активированный уголь, стальной порошок (мелкая стружка) и даже слюна. Поэтому, перекись водорода нагревать не нужно, достаточно катализатора!

Cтраница 1


Промышленное получение кислорода в настоящее время осуществляется по трем схемам: высокого давления, двух давлений и одного низкого давления. В установках малой производительности (до 300 м3 / ч технического кислорода) обычно используется холодильный цикл высокого или среднего давления. В этих установках воздух компримируется поршневыми компрессорами. Очистка воздуха от углекислоты производится в декарбонизаторах или скрубберах. Для получения холода в этих установках используется дросселирование или расширение воздуха в поршневом детандере.  

При промышленном получении кислорода способом разделения воздуха методом глубокого охлаждения и ректификации теоретически необходимо израсходовать 0 056 кет ч / м3 кислорода.  

Основным источником промышленного получения кислорода является жидкий воздух. Выделяемый из него кислород содержит обычно лишь незначительные примеси азота и тяжелых инертных газов. Для получения особо чистого кислорода пользуются иногда разложением воды электрическим током.  

Основным источником промышленного получения кислорода является воздух, который сжижают и затем фракционируют.  

Основным источником промышленного получения кислорода является жидкий воздух. Для получения особо чистого кислорода пользуются иногда разложением воды электрическим током.  


Основным источником промышленного получения кислорода является жидкий воздух. Выделяемый из него кислород содержит обычно лишь незначительные примеси азота и тяжелых инертных газов. Для получения особенного чистого кислорода пользуются иногда разложением воды электрическим током.  

На чем основано промышленное получение кислорода и азота из воздуха.  


На этом и основано промышленное получение кислорода и азота из воздуха.  

Однако оба этих метода непригодны для промышленного получения кислорода, потому что они неэкономичны.  

Атмосферный воздух является неисчерпаемым источником сырья для промышленного получения кислорода, азота и редких (инертных) газов методом глубокого охлаждения. Кроме кислорода и азота, воздух содержит в небольших количествах следующие газы: аргон, неон, гелий, криптон, ксенон и различные примеси.  

Присутствие ацетилена в жидком кислороде в количестве, превышающем допустимые пределы, может служить причиной возникновения взрывов в аппаратах для разделения воздуха при промышленном получении кислорода. Поэтому контроль содержания ацетилена в жидком кислороде имеет очень большое значение. Ниже приводим методы определения ацетилена в жидком кислороде.  

Мы уже указывали, что получение кислорода сжижением воздуха и последующим отделением азота неприменимо в лабораторных условиях, потому что для этого требуется сложная и громоздкая установка, подходящая только для промышленного получения кислорода.  

В нашей стране ежегодно вводятся в эксплуатацию новые и расширяются действующие станции и цехи для получения кислорода. Промышленное получение кислорода в настоящее время осуществляется методом низкотемпературной ректификации сжиженного воздуха. Воз-духоразделительные (кислородные) установки представляют собой комплекс машин и аппаратов, связанных определенной технологической схемой. Эксплуатация воздухораспределительных установок отличается тем, что в установках иногда происходят взрывы, приводящие к их разрушению или, в лучшем случае, к снижению качества продуктов производства.  

Четыре элемента-«халькогена» (т.е. «рождающих медь») возглавляют главную подгруппу VI группы (по новой классификации - 16-ю группу) периодической системы. Кроме серы, теллура и селена к ним также относится кислород. Давайте подробно разберем свойства этого наиболее распространенного на Земле элемента, а также применение и получение кислорода.

Распространенность элемента

В связанном виде кислород входит в химический состав воды - его процентное соотношение составляет порядка 89%, а также в состав клеток всех живых существ - растений и животных.

В воздухе кислород находится в свободном состоянии в виде О2, занимая пятую часть его состава, и в виде озона - О3.

Физические свойства

Кислород О2 представляет собой газ, который не обладает цветом, вкусом и запахом. В воде растворяется слабо. Температура кипения - 183 градуса ниже нуля по Цельсию. В жидком виде кислород имеет голубой цвет, а в твердом виде образует синие кристаллы. Температура плавления кислородных кристаллов составляет 218,7 градуса ниже нуля по Цельсию.

Химические свойства

При нагревании этот элемент реагирует со многими простыми веществами, как металлами, так и неметаллами, образуя при этом так называемые оксиды - соединения элементов с кислородом. в которую элементы вступают с кислородом, называется окислением.

Например,

4Na + О2= 2Na2O

2. Через разложение перекиси водорода при нагревании ее в присутствии оксида марганца, выступающего в роли катализатора.

3. Через разложение перманганата калия.

Получение кислорода в промышленности проводится такими способами:

1. Для технических целей кислород получают из воздуха, в котором обычное его содержание составляет порядка 20%, т.е. пятую часть. Для этого воздух сначала сжигают, получая смесь с содержанием жидкого кислорода около 54%, жидкого азота - 44% и жидкого аргона - 2%. Затем эти газы разделяют с помощью процесса перегонки, используя сравнительно небольшой интервал между температурами кипения жидкого кислорода и жидкого азота - минус 183 и минус 198,5 градуса соответственно. Получается, что азот испаряется раньше, чем кислород.

Современная аппаратура обеспечивает получение кислорода любой степени чистоты. Азот, который получается при разделении жидкого воздуха, используется в качестве сырья при синтезе его производных.

2. также дает кислород очень чистой степени. Этот способ получил распространение в странах с богатыми ресурсами и дешевой электроэнергией.

Применение кислорода

Кислород является основным по значению элементом в жизнедеятельности всей нашей планеты. Этот газ, который содержится в атмосфере, расходуется в процессе животными и людьми.

Получение кислорода очень важно для таких сфер деятельности человека, как медицина, сварка и резка металлов, взрывные работы, авиация (для дыхания людей и для работы двигателей), металлургия.

В процессе хозяйственной деятельности человека кислород расходуется в больших количествах - например, при сжигании различных видов топлива: природного газа, метана, угля, древесины. Во всех этих процессах образуется При этом природа предусмотрела процесс естественного связывания данного соединения с помощью фотосинтеза, который проходит в зеленых растениях под действием солнечного света. В результате этого процесса образуется глюкоза, которую растение потом расходует для строительства своих тканей.