Химическая промышленность. Большая энциклопедия нефти и газа

Химическая система - сочетание веществ, взаимодействующих друг с другом. Система отделяется от окружения мысленно или фактически. Химические системы делятся на следующие виды:

а) гомогенные

б) гетерогенные

в) дисперсионные

г) нонвариантные

д) моновариантные

е) бивариантные

ж) поливариантные.

Гомогенная система - физико-химическая система, содержащая одну фазу.

В гомогенной системе, включающей два и более химических компонента, каждый из компонентов распределяется в объеме другого соединения в виде молекул, атомов или ионов. Компоненты гомогенной системы имеют определенные значения по системе или непрерывно меняющиеся от одной к другой точке системы. Известны следующие гомогенные системы: лед, жидкие или твердые растворы, смеси газов. При этом различают жидкие, кристаллические и аморфные вещества.

Гетерогенная система - система, включающая несколько гомогенных частей (фаз), разделенных границами.

Фазы могут отличаться одна от другой составом и свойствами.

Фаза - гомогенная часть гетерогенной системы, имеющая одинаковые свойства во всех точках и отделяющаяся от других частей границами.

Дисперсная система - система мельчайших частиц (твердых, жидких или газообразных), суспендированных в жидкой, газообразной или твердой среде (дисперсная среда).

Примерами дисперсных систем являются: молоко, в котором частицы жира суспендированы в воде, а также различные эмульсии, суспензии, туманы, пены и дымы.

Дисперсные системы изучаются в химии коллоидов. Известны жидкие, гелеподобные и твердые коллоиды.

В термодинамике существуют такие понятия, как изолированная, открытая и стабильная системы, а также моновариантная, бивариантная и поливариантная системы.

Изолированная система - система, которая не может обмениваться энергией и веществом с окружающей средой.

Открытая система обменивается энергией и веществом со средой.

В стабильной химической системе между веществами, образующими систему, существует равновесие.

Моновариантная система - химическая система, в которой две фазы находятся в равновесии.

Нонвариантная химическая система - система, в которой три компонента (или фазы) находятся в равновесии.

Бивариантная (поливариантная) система - система, представляющая собой одну фазу и сумму трех или более независимых компонентов и внешних факторов (температура и давление).

Среди агрегированных состояний известны конденсированные состояния при стандартных условиях (Т =291,15 К; Р=101,325 кПа).

Конденсированные вещества могут находиться в твердом или жидком состояниях; твердые вещества могут быть кристаллическими или аморфными.

Стабильность химических систем достигается присутствием химических связей и взаимодействий, которые различаются по энергии и природе. В дисперсных системах имеют место наиболее разнообразные системы связей и взаимодействий.

Дисперсионная среда - вещество, которое присутствует протяженной фазой в дисперсной системе.

Дисперсная фаза - вещество, распределенное в среде.

В зависимости от линейных размеров дисперсионной фазы образуются гомогенные и гетерогенные дисперсные системы. Гомогенные дисперсные системы обычно называются растворами. Они могут быть твердыми, жидкими или газовыми. В растворах линейные размеры дисперсной фазы не превышают 1 нм. Гетерогенные дисперсные системы разделяются на коллоидные системы (линейный размер частиц более 100 нм). В зависимости от агрегатного состояния дисперсной среды различают твердые (сплавы); жидкие (пены, эмульсии, суспензии); газовые (туманы, дымы, аэрозоли, газовые смеси) дисперсные системы. В этих системах возможны два или более видов фазовых границ, а также два или более видов химических связей. В сплавах между фазами образуются граничные слои с переменной электронной плотностью. При образовании сплавов в основном принимают участие металлические связи, вместе с тем образование ионных и ковалентных связей также возможно.

Когда возникают пены, во взаимодействии участвуют газы и жидкие компоненты. В граничном слое обычно присутствует растворенный газ в соответствующей жидкости. Здесь главные химические связи ковалентные. Эмульсии содержат две или более жидких фаз, а суспензии имеют твердые и жидкие фазы (в суспензиях твердая фаза распределяется в жидкой среде).

Дымы являются дисперсными системами, в которых твердые частицы распределяются в газовой среде. В то же время в туманах частицы жидкой фазы распределяются в газовых смесях.

Во всех этих случаях присутствуют различные химические связи и взаимодействия, а также для соответствующих дисперсных систем наблюдается особенное распределение электронной плотности.

Известно, что молекулы химических веществ могут быть представлены в виде карт электронной плотности. При сложении такого описания целесообразно представлять химические системы в виде карт изменений плотности (или других свойств) для реальных фаз с учетом данных для межфазных слоев. Например, для суспензии, в которой распределены частицы практически одного размера и одной формы, имеющие на поверхности активные центры, взаимодействующие с дисперсионной средой, можно представить изменения плотности в одном направлении в виде диаграммы.

Поверхностный слой, образующийся на границе «суспензия - воздушная среда», обычно имеет большую, чем дисперсионная среда, плотность, поскольку химические частицы поверхностного слоя находятся под влиянием поля частиц во внутренних слоях дисперсионной среды и дисперсионной фазы. При этом не учитываются флуктуации плотности в дисперсионной среде и дисперсионной фазе. Для представления образования и свойств дисперсных систем являются важными такие понятия, как адсорбция, хемосорбция, адгезия, когезия, коагуляция, золь, гель, лиофобность, лиофильность.

Адсорбция - процесс увеличения концентрации химического соединения на межфазной поверхности по отношению к концентрации этого вещества в объеме.

Хемосорбция - адсорбция, сопровождающаяся химическими реакциями.

Процессы хемосорбции зачастую связываются (сопровождаются) процессами адгезии.

Адгезия - связывание различных жидких и твердых фаз на их границе.

Когезия - связывание (образование связей) между химическими частицами в гомогенной фазе.

Т.о., адгезия и когезия - противоположные процессы. Благодаря адгезии твердые тела могут быть изотропными и не разрушаться на отдельные фазы. Однако при определенных условиях возможны фазовые распределения или взаимодействия частиц дисперсной фазы между собой. Для коллоидных систем возможна коагуляция.

Коагуляция - слипание вместе частиц дисперсной фазы в коллоидных системах.

При коагуляции в жидкой дисперсной среде образуются гели.

Гели - желеподобные коллоидные системы с жидкой дисперсной средой.

Золи - обычно коллоидные растворы или коллоидные системы, включающие взаимодействующие между собой дисперсную фазу и дисперсную среду.

Для характеристики способности веществ к взаимодействию с жидкой средой применяют термины «лиофобность» и «лиофильность».

Химическая промышленность - вид промышленности, в котором ключевое значение имеет переработка сырья химическими методами. Основными материалами, использующимися в этой отрасли, являются различное минеральное сырьё и нефть. Роль химической промышленности в современном мире очень велика. Благодаря ей люди могут пользоваться различными пластмассовыми и пластиковыми изделиями, а также другими продуктами переработки нефти. Кроме этого, отрасль даёт взрывчатые вещества, удобрения для сельскохозяйственных нужд, лекарственные препараты и так далее.

Развитие

Началом истории этой отрасли принято считать промышленный переворот, который произошёл в начале XVII века. До XVI века «наука о веществах» вообще развивалась очень медленно, но, как только люди научились применять эти знания в промышленности, многое изменилось. Самым первым продуктом химической промышленности стала серная кислота, которая и сейчас остаётся исключительно важным веществом и используется во многих сферах деятельности человека. В то время это соединение в основном использовалось в обработке руд металлов, необходимых для промышленной революции в большом количестве. Первые предприятия по выпуску серной кислоты были созданы в Англии, Франции и России.

Вторым этапом развития этой сферы стала необходимость массового выпуска кальцинированной соды. Это вещество было необходимо для обеспечения производства стекла и тканей.

На первом этапе самый большой вклад в развитие отрасли внесла Англия. С увеличением интереса к органической химии всё большее влияние на развитие этой науки оказывала Германия, чьи учёные до сих пор считаются одними из лучших специалистов в этой сфере. В начале XX века большая часть химических производств находилась именно в этой стране, что, по мнению некоторых аналитиков, обеспечило немецким лидерам уверенность в победе в Первой мировой войне из-за высокого качества взрывчатых веществ и перспективных исследований химического оружия. Кстати, впервые боевой отравляющий газ применили именно германские войска.

Отрасли химической промышленности

Сейчас актуальна как неорганическая, так и органическая химия, ежегодно совершается множество открытий в этих сферах. Наиболее перспективными разработками являются:

  • Переработка нефти.
  • Создание лекарственных препаратов.
  • Создание удобрений.
  • Создание полимеров и пластмасс.
  • Изучение проводниковых свойств веществ.

Над созданием идеального проводника учёные работают уже несколько десятилетий. В случае успеха человечество сможет использовать ресурсы планеты гораздо более эффективно.

Химическая промышленность в России

Нефтехимия

Нефтехимия - ключевая отрасль химической промышленности в России. Во многом это связано с исключительно важной ролью нефтеперерабатывающей промышленности в экономике страны. Учебные заведения ежегодно выпускают десятки тысяч специалистов-нефтехимиков. Государство также выделяет большие деньги на спонсирование исследований в этой области.

Ежегодный объём продаж всех нефтехимических производств составляет более 500 миллиардов рублей.

Производство аммиака

«Тольяттиазот» является одним из ведущих производителей аммиака в мире. С недавнего времени фирма выпускает более 3 миллионов тонн газа в год, это исключительно высокий показатель. По оценкам специалистов, доля этой компании в мировом производстве аммиака составляет от 8 до 10%, также предприятие занимается производством минеральных удобрений и занимает в этом секторе около 20% российского рынка.

Производство удобрений

Немаловажной частью отрасли является и производство удобрений. На территории России расположены очень крупные месторождения сырьевых ресурсов для этой отрасли. Производство ресурсов для создания химических удобрений также хорошо развито. Во времена СССР над повышением эффективности удобрений работали лучшие учёные, сделавшие немало фундаментальных открытий в этой области. Благодаря этому Россия является одним из важнейших экспортёров удобрений.

Фармакологическая промышленность

Производство лекарственных средств и их компонентов является очень перспективным направлением. В настоящее время эта отрасль не покрывает российских потребностей, а создание многих препаратов даже не налажено. Поэтому ежегодно иностранные инвесторы, включая крупные химические концерны, вкладывают средства на развитие этой отрасли. Тем не менее существенное увеличение объёмов производства и качества продукции, по оценкам аналитиков, произойдёт в лучшем случае через десять лет.

Химическая промышленность в мире

Наиболее развита химическая промышленность в Германии, Великобритании и США. То есть среди европейских стран наиболее продвинутыми обычно являются государства, которые внесли определённый вклад в развитие химии как науки. В случае с США это связано с благоприятными условиями для развития химии и фармакологии: хорошая экономическая обстановка, наличие больших сырьевых ресурсов и развитой транспортной системы, переманивание лучших специалистов из других стран.

В частности, в пятёрке концернов с наибольшей прибылью 2 компании из Германии, 2 из Великобритании и одна из США.

Окружающий мир материален. Материя бывает двух видов: вещество и поле. Объект химии – вещество (в том числе и влияние на вещество различных полей – звуковых, магнитных, электромагнитных и др.)

Вещество - все, что имеет массу покоя (т.е. характеризуется наличием массы тогда, когда не движется) . Так, хотя масса покоя одного электрона (масса не движущегося электрона) очень мала – около 10 -27 г, но даже один электрон – это вещество.

Вещество бывает в трех агрегатных состояниях – газообразном, жидком и твердом. Есть еще одно состояние вещества – плазма (например, плазма есть в грозовой и шаровой молнии), но в школьном курсе химию плазмы почти не рассматривают.

Вещества могут быть чистыми, очень чистыми (нужными, например, для создания волоконной оптики), могут содержать заметные количества примесей, могут быть смесями.

Все вещества состоят из мельчайших частиц – атомов. Вещества, состоящие из атомов одного вида (из атомов одного элемента), называют простыми (например, древесный уголь, кислород, азот, серебро и др.). Вещества, которые содержат связанные между собой атомы разных элементов, называют сложными.

Если в веществе (например, в воздухе) присутствуют два или большее число простых веществ, и их атомы не связаны между собой, то его называют не сложным, а смесью простых веществ. Число простых веществ сравнительно невелико (около пятисот), а число сложных веществ огромно. К настоящему времени известны десятки миллионов разных сложных веществ.

Химические превращения

Вещества способны вступать между собой во взаимодействие, причем возникают новые вещества. Такие превращения называют химическими . Например, простое вещество уголь взаимодействует (химики говорят – реагирует) с другим простым веществом – кислородом, в результате образуется сложное вещество – углекислый газ, в котором атомы углерода и кислорода связаны между собой. Такие превращения одних веществ в другие называют химическими. Химические превращения – это химические реакции. Так, при нагревании сахара на воздухе сложное сладкое вещество – сахароза (из которого состоит сахар) – превращается в простое вещество – уголь и сложное вещество – воду.

Химия изучает превращения одних веществ в другие. Задача химии – выяснить, с какими именно веществами может при данных условиях взаимодействовать (реагировать) то или иное вещество, что при этом образуется. Кроме того, важно выяснить, при каких именно условиях может протекать то или иное превращение и можно получить нужное вещество.

Физические свойства веществ

Каждое вещество характеризуется совокупностью физических и химических свойств. Физические свойства – это свойства, которые можно охарактеризовать с помощью физических приборов . Например, с помощью термометра можно определить температуру плавления и кипения воды. Физическими методами можно охарактеризовать способность вещества проводить электрический ток, определить плотность вещества, его твердость и т.д. При физических процессах вещества остаются неизменными по составу.

Физические свойства веществ подразделяют на счислимые (те, которые можно охарактеризовать с помощью тех или иных физических приборов числом, например, указанием плотности, температур плавления и кипения, растворимости в воде и др.) и несчислимые (те, которые охарактеризовать числом нельзя или очень трудно – такие, как цвет, запах, вкус и др.).

Химические свойства веществ

Химические свойства вещества – это совокупность сведений о том, с какими другими веществами и при каких условиях вступает в химические взаимодействия данное вещество . Важнейшая задача химии – выявление химических свойств веществ.

В химических превращениях участвуют мельчайшие частицы веществ – атомы. При химических превращениях из одних веществ образуются другие вещества, и исходные вещества исчезают, а вместо них образуются новые вещества (продукты реакции). А атомы при всех химических превращениях сохраняются . Происходит их перегруппировка, при химических превращениях старые связи между атомами разрушаются и возникают новые связи.

Химический элемент

Число различных веществ огромно (и у каждого из них своя совокупность физических и химических свойств). Атомов, отличающихся друг от друга по важнейшим характеристикам, в окружающем нас материальном мире сравнительно невелико – около ста. Каждому виду атомов отвечает свой химический элемент. Химический элемент – это совокупность атомов с одинаковыми или близкими характеристиками . В природе встречается около 90 различных химических элементов. К настоящему времени физики научились создавать новые, отсутствующие на Земле виды атомов. Такие атомы (и, соответственно, такие химические элементы) называют искусственными (по-английски – man-made elements). Искусственно полученных элементов к настоящему времени синтезировано более двух десятков.

Каждый элемент имеет латинское название и одно- или двух-буквенный символ. В русскоязычной химической литературе нет четких правил произношения символов химических элементов. Одни произносят так: называют элемент по-русски (символы натрия, магния и др.), другие – по латинским буквам (символы углерода, фосфора, серы), третьи – как звучит название элемента по-латыни (железо, серебро, золото, ртуть). Символ элемента водорода Н у нас принято произносить так, как эту букву произносят по-французски.

Сравнение важнейших характеристик химических элементов и простых веществ приведено в таблице ниже. Одному элементу может отвечать несколько простых веществ (явление аллотропии: углерод, кислород и др.), а может – и одно (аргон и др. инертные газы).


Недавно мы с друзьями смотрели довольно интересный фильм. В нем рассказывалось о нашем будущем, о том, что будет с жизнью людей. Вообще, как я поняла жанр этого фильма, был фантастика. И в одной из сцен говорилось о возрастании химической промышленности, и о том что вскоре мы не сможем полноценно жить, из-за того что весь мир будет окутан химическими материалами. Все, конечно, посмеялись и пустили этот момент вскользь, но я задумалась, что ведь действительно химическая промышленность постепенно продвигается на первый план, вытесняя другие сферы деятельности, и это меня немного насторожило. Я решила во всем разобраться и теперь хочу рассказать и вам.

Что такое химическая промышленность

Химическая промышленность – исключительная деятельность в экономике , основой которой служит процесс химизации , т.е. использования химических способов, материалов и процессов в различные отрасли сфер хозяйства.

Она выделяется непростой организацией, включающей данные отрасли:

  • добычу горно-химического сырья;
  • основную химию;
  • химию полимеров (органический синтез).

Даже по объяснению данного термина я уже сделала вывод о значимости данной промышленности, и эта значимость бесконечно огромна. Ведь химическая промышленность включает возможность потребления сырья и утилизацию почти всех отходов производства, даже самых токсичных. На мой взгляд, это очень весомый аргумент о роли данной деятельности в промышленном мире. Ни одна отрасль не может сравниться с хим. промышленностью в производстве фактически новых материалов с заранее заданными свойствами.


Факторы размещения предприятий химической промышленности

В основном к факторам размещения относится:

  • сырьевой фактор;
  • потребительский фактор;
  • потребительски-сырьевой фактор.

Специфика размещения данных производств в России – концентрация в европейской части страны. Эту особенность обуславливает несколько причин. Среди главных – близость потребителя и наличие сырья (потребительски-сырьевой фактор ).


Примеры размещения

В основном, конечно добычу сырья можно отнести к сырьевому фактору. К примеру, горно-химические предприятия располагаются в Березниках и Соликамске, потому что здесь находится одно из крупнейших месторождений калийных солей. Фосфорные удобрения вырабатывают из апатитов, добываемых в Хибинах.Тем не менее, самым важным фактором химических предприятий является потребительский фактор . Практически все центры расположены в крупных городах. Например, какое либо предприятие удобней построить в Санкт-Петербурге, где проживает много людей и есть спрос, нежели чем в провинциальном городке с небольшим населением.

Основания (гидроксиды) – сложные вещества, молекулы которых в своём составе имеют одну или несколько гидрокси-групп OH. Чаще всего основания состоят из атома металла и группы OH. Например, NaOH – гидроксид натрия, Ca(OH) 2 – гидроксид кальция и др.

Существует основание – гидроксид аммония, в котором гидрокси-группа присоединена не к металлу, а к иону NH 4 + (катиону аммония). Гидроксид аммония образуется при растворении аммиака в воде (реакции присоединения воды к аммиаку):

NH 3 + H 2 O = NH 4 OH (гидроксид аммония).

Валентность гирокси-группы – 1. Число гидроксильных групп в молекуле основания зависит от валентности металла и равно ей. Например, NaOH, LiOH, Al (OH) 3 , Ca(OH) 2 , Fe(OH) 3 и т.д.

Все основания – твёрдые вещества, которые имеют различную окраску. Некоторые основания хорошо растворимы в воде (NaOH, KOH и др.). Однако большинство из них в воде не растворяются.

Растворимые в воде основания называются щелочами. Растворы щелочей «мыльные», скользкие на ощупь и довольно едкие. К щелочам относят гидроксиды щелочных и щелочноземельных металлов (KOH, LiOH, RbOH, NaOH, CsOH, Ca(OH) 2 , Sr(OH) 2 , Ba(OH) 2 и др.). Остальные являются нерастворимыми.

Нерастворимые основания – это амфотерные гидроксиды, которые при взаимодействии с кислотами выступают как основания, а со щёлочью ведут себя, как кислоты.

Разные основания отличаются разной способностью отщеплять гидрокси-группы, поэтому признаку они делятся на сильные и слабые основания.

Сильные основания в водных растворах легко отдают свои гидрокси-группы, а слабые – нет.

Химические свойства оснований

Химические свойства оснований характеризуются отношением их к кислотам, ангидридам кислот и солям.

1. Действуют на индикаторы . Индикаторы меняют свою окраску в зависимости от взаимодействия с разными химическими веществами. В нейтральных растворах – они имеют одну окраску, в растворах кислот – другую. При взаимодействии с основаниями они меняют свою окраску: индикатор метиловый оранжевый окрашивается в жёлтый цвет, индикатор лакмус – в синий цвет, а фенолфталеин становится цвета фуксии.

2. Взаимодействуют с кислотными оксидами с образованием соли и воды:

2NaOH + SiO 2 → Na 2 SiO 3 + H 2 O.

3. Вступают в реакцию с кислотами, образуя соль и воду. Реакция взаимодействия основания с кислотой называется реакцией нейтрализации, так как после её окончания среда становится нейтральной:

2KOH + H 2 SO 4 → K 2 SO 4 + 2H 2 O.

4. Реагируют с солями, образуя новые соль и основание:

2NaOH + CuSO 4 → Cu(OH) 2 + Na 2 SO 4.

5. Способны при нагревании разлагаться на воду и основной оксид:

Cu(OH) 2 = CuO + H 2 O.

Остались вопросы? Хотите знать больше об основаниях?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.