Компоненты ядра и их функции. Структурные компоненты клетки: ядро и цитоплазма. Реактивные изменения клеток

Как правило, эукариотическая клетка имеет одно ядро , но встречаются двуядерные (инфузории) и многоядерные клетки (опалина). Некоторые высоко­специализи­рованные клетки вторично утрачивают ядро (эритроциты млекопитающих, ситовидные трубки покрытосеменных).

Форма ядра - сферическая, эллипсовидная, реже лопастная, бобовидная и др. Диаметр ядра - обычно от 3 до 10 мкм.

Строение ядра:
1 - наруж­ная мембрана; 2 - внут­ренняя мемб­рана; 3 - поры; 4 - ядрышко; 5 - гетеро­хроматин; 6 - эухро­матин.

Ядро отграничено от цитоплазмы двумя мембранами (каждая из них имеет типичное строение). Между мембранами - узкая щель, заполненная полужидким веществом. В некоторых местах мембраны сливаются друг с другом, образуя поры (3), через которые происходит обмен веществ между ядром и цитоплазмой. Наружная ядерная (1) мембрана со стороны, обращенной в цитоплазму, покрыта рибосомами, придающими ей шероховатость, внутренняя (2) мембрана гладкая. Ядерные мембраны являются частью мембранной системы клетки: выросты наружной ядерной мембраны соединяются с каналами эндоплазматической сети, образуя единую систему сообщающихся каналов.

Кариоплазма (ядерный сок, нуклеоплазма) - внутреннее содержимое ядра, в котором располагаются хроматин и одно или несколько ядрышек. В состав ядерного сока входят различные белки (в том числе ферменты ядра), свободные нуклеотиды.

Ядрышко (4) представляет собой округлое плотное тельце, погруженное в ядерный сок. Количество ядрышек зависит от функционального состояния ядра и варьирует от 1 до 7 и более. Ядрышки обнаруживаются только в неделящихся ядрах, во время митоза они исчезают. Ядрышко образуется на определенных участках хромосом, несущих информацию о структуре рРНК. Такие участки называются ядрышковым организатором и содержат многочисленные копии генов, кодирующих рРНК. Из рРНК и белков, поступающих из цитоплазмы, формируются субъединицы рибосом. Таким образом, ядрышко представляет собой скопление рРНК и рибосомальных субъединиц на разных этапах их формирования.

Хроматин - внутренние нуклеопротеидные структуры ядра, окрашивающиеся некоторыми красителями и отличающиеся по форме от ядрышка. Хроматин имеет вид глыбок, гранул и нитей. Химический состав хроматина: 1) ДНК (30–45%), 2) гистоновые белки (30–50%), 3) негистоновые белки (4–33%), следовательно, хроматин является дезоксирибонуклеопротеидным комплексом (ДНП). В зависимости от функционального состояния хроматина различают: гетерохроматин (5) и эухроматин (6). Эухроматин - генетически активные, гетерохроматин - генетически неактивные участки хроматина. Эухроматин при световой микроскопии не различим, слабо окрашивается и представляет собой деконденсированные (деспирализованные, раскрученные) участки хроматина. Гетерохроматин под световым микроскопом имеет вид глыбок или гранул, интенсивно окрашивается и представляет собой конденсированные (спирализованные, уплотненные) участки хроматина. Хроматин - форма существования генетического материала в интерфазных клетках. Во время деления клетки (митоз, мейоз) хроматин преобразуется в хромосомы.

Функции ядра: 1) хранение наследственной информации и передача ее дочерним клеткам в процессе деления, 2) регуляция жизнедеятельности клетки путем регуляции синтеза различных белков, 3) место образования субъединиц рибосом.

Яндекс.ДиректВсе объявления

Хромосомы

Хромосомы - это цитологические палочковидные структуры, представляющие собой конденсированный хроматин и появляющиеся в клетке во время митоза или мейоза. Хромосомы и хроматин - различные формы пространственной организации дезоксирибонуклеопротеидного комплекса, соответствующие разным фазам жизненного цикла клетки. Химический состав хромосом такой же, как и хроматина: 1) ДНК (30–45%), 2) гистоновые белки (30–50%), 3) негистоновые белки (4–33%).

Основу хромосомы составляет одна непрерывная двухцепочечная молекула ДНК; длина ДНК одной хромосомы может достигать нескольких сантиметров. Понятно, что молекула такой длины не может располагаться в клетке в вытянутом виде, а подвергается укладке, приобретая определенную трехмерную структуру, или конформацию. Можно выделить следующие уровни пространственной укладки ДНК и ДНП: 1) нуклеосомный (накручивание ДНК на белковые глобулы), 2) нуклеомерный, 3) хромомерный, 4) хромонемный, 5) хромосомный.

В процессе преобразования хроматина в хромосомы ДНП образует не только спирали и суперспирали, но еще петли и суперпетли. Поэтому процесс формирования хромосом, который происходит в профазу митоза или профазу 1 мейоза, лучше называть не спирализацией, а конденсацией хромосом.

Хромосомы: 1 - метацентрическая; 2 - субметацентрическая; 3, 4 - акроцентрические. Строение хромосомы: 5 - центромера; 6 - вторичная перетяжка; 7 - спутник; 8 - хроматиды; 9 - теломеры.

Метафазная хромосома (хромосомы изучаются в метафазу митоза) состоит из двух хроматид (8). Любая хромосома имеет первичную перетяжку (центромеру) (5), которая делит хромосому на плечи. Некоторые хромосомы имеют вторичную перетяжку (6) и спутник (7). Спутник - участок короткого плеча, отделяемый вторичной перетяжкой. Хромосомы, имеющие спутник, называются спутничными (3). Концы хромосом называются теломерами (9). В зависимости от положения центромеры выделяют: а) метацентрические (равноплечие) (1), б) субметацентрические (умеренно неравноплечие) (2), в) акроцентрические (резко неравноплечие) хромосомы (3, 4).

Соматические клетки содержат диплоидный (двойной - 2n) набор хромосом, половые клетки - гаплоидный (одинарный - n). Диплоидный набор аскариды равен 2, дрозофилы - 8, шимпанзе - 48, речного рака - 196. Хромосомы диплоидного набора разбиваются на пары; хромосомы одной пары имеют одинаковое строение, размеры, набор генов и называются гомологичными .

Кариотип - совокупность сведений о числе, размерах и строении метафазных хромосом. Идиограмма - графическое изображение кариотипа. У представителей разных видов кариотипы разные, одного вида - одинаковые. Аутосомы - хромосомы, одинаковые для мужского и женского кариотипов. Половые хромосомы - хромосомы, по которым мужской кариотип отличается от женского.

Хромосомный набор человека (2n = 46, n = 23) содержит 22 пары аутосом и 1 пару половых хромосом. Аутосомы распределены по группам и пронумерованы:

Половые хромосомы не относятся ни к одной из групп и не имеют номера. Половые хромосомы женщины - ХХ, мужчины - ХУ. Х-хромосома - средняя субметацентрическая, У-хромосома - мелкая акроцентрическая.

В области вторичных перетяжек хромосом групп D и G находятся копии генов, несущих информацию о строении рРНК, поэтому хромосомы групп D и G называются ядрышкообразующими .

Функции хромосом: 1) хранение наследственной информации, 2) передача генетического материала от материнской клетки к дочерним.

Лекция №9.
Строение прокариотической клетки. Вирусы

К прокариотам относятся архебактерии, бактерии и синезеленые водоросли. Прокариоты - одноклеточные организмы, у которых отсутствуют структурно оформленное ядро, мембранные органоиды и митоз.

Ядро - постоянный компонент всех клеток многоклеточных растений и животных, а также простейших и одноклеточных водорослей. Большинство клеток имеет одно ядро. Однако есть клетки с двумя, тремя и даже с несколькими десятками или сотнями ядер. Такие клетки называются многоядерными и встречаются, например, среди одноклеточных организмов, а также в печени и костном мозге позвоночных животных.

Форма ядра и часто его размеры зависят от формы клетки. Обычно в шаровидных клетках ядро имеет округлую форму, а в клетках, вытянутых в длину, ядро также удлиненной формы.

Различают два состояния ядра: делящееся и неделящееся. Мы рассмотрим особенности строения и функции неделящихся ядер.

В них различают ядерную оболочку, ядерный сок, или кариоплазму («карион» - ядро, греч.), хроматин и ядрышки. Хромосомы формируются только в делящихся ядрах, но иногда они видны и в промежутке между делениями.

Ядерная оболочка. От цитоплазмы ядро отделено ядерной оболочкой, которая хорошо видна в световой микроскоп в форме контура, ограничивающего ядро. На электронномикроскопической фотографии, где ядерная оболочка состоит из двух мембран: наружной и внутренней. Каждая из мембран имеет типичное трехслойное строение, такое же, как наружная цитоплазматическая мембрана и мембраны других органоидов.

Ядерная оболочка не сплошная: в ней имеются многочисленные поры, которые настолько малы, что видны лишь с помощью электронного микроскопа. Диаметр пор около 300-500 А. Через поры осуществляется обмен веществ между цитоплазмой и ядром. Наружная мембрана ядерной оболочки тесно связана с эндоплазматической сетью. Во время деления ядра в большинстве клеток ядерная оболочка разрушается.

Ядерный сок (кариоплазма). Ядерный сок - это вещество полужидкой консистенции, которое находится под ядерной оболочкой и заполняет всю полость ядра. В ядерном соке располагаются ядрышки и хроматин, а в последнее время с помощью электронного микроскопа в нем обнаружены рибосомы.

Хроматин. В неделящихся ядрах хроматин часто бывает виден в форме отдельных глыбок небольших размеров или нитей. Эти хроматиновые структуры содержат дезоксирибонуклеиновую кислоту (ДНК) и белок.

Хроматин - это тот материал, из которого образуются хромосомы при делении ядер. В делящихся ядрах ДНК сосредоточена именно в хромосомах. ДНК - важнейшая часть ядра. В этом веществе заключена наследственная информация, передающаяся из поколения в поколение у каждого вида организмов.

Ядрышко. Ядрышко представляет собой плотное округлое тельце, располагающееся в ядерном соке. В ядрах разных клеток, а также и в ядре одной и той же клетки в разные моменты ее жизнедеятельности количество ядрышек, их форма и размеры могут быть разными. Часто в ядрах содержится лишь 1-2 ядрышка, но их может быть 5-7 и более. Ядрышки имеются только в неделящихся ядрах; во время деления они исчезают, а в ядрах дочерних клеток образуются заново.

В состав ядрышка входят РНК и белки. Важнейшая функция ядрышка заключается в том, что в нем происходит формирование рибосом, которые затем выходят из ядра в цитоплазму. Это значит, что рибосомы, располагающиеся на мембранах эндоплазматической сети и свободно лежащие в цитоплазме, образуются в ядрышке. Рибосомы, находящиеся в ядрышке, осуществляют синтез белков.

Взаимодействие ядра и цитоплазмы. Цитоплазма и ядро клетки находятся в теснейшей взаимосвязи друг с другом. Если из клетки удалить ядро, то цитоплазма неизбежно погибнет. В свою очередь ядро не может существовать без цитоплазмы даже в течение короткого времени. Для жизни клетки необходимо взаимодействие ядра, цитоплазмы и всех ее органоидов как единого целого. Любое повреждение вызывает в конечном итоге гибель клетки. В ней нет структурных компонентов, способных к продолжительному самостоятельному существованию. Клетка - это элементарная целостная живая система.

Взаимосвязь наук, создавших молекулярную биологию.

Молекулярная биология возникла как наука в 30х годах двадцатого столетия. С тех пор эта наука расширяется захватывая приграничные области между химией, физикой и биологией. Первоначально молекулярная биология развивалась как биохимия нуклеиновых кислот. В дальнейшем молекулярная биология стала изучать путь передачи наследственной информации и биологического синтеза белковых структур.

Начав с изучения биологических процессов на молекулярно-атомном уровне, молекулярная биология перешла к сложным надмолекулярным клеточным структурам, а в настоящее время успешно решает проблемы генетики, физиологии, эволюции и экологии.

2. Основные этапы развития и наиболее крупные открытия в молекулярной биологии.

1. Романтический период 1935-1944гг.

Макс Дельбрюк и Сальвадор Лурия занимались изучением репродукции фагов и вирусов, представляющих собой комплексы нуклеиновых кислот с белками

В 1940г. Джордж Бидл и Эдуард Татум сформулировали гипотезу - "Один ген - один фермент". Однако, что такое ген в физико-химическом плане тогда еще не знали.

2. Второй романтический период 1944-1953гг.

Была доказана генетическая роль ДНК. В 1953 г. появилась модель двойной спирали ДНК, за которую ее создатели Джеймс Уотсон, Френсис Крик и Морис Уилкинс были удостоены Нобелевской премии.

3. Догматический период 1953-1962гг.

Сформулирована центральная догма молекулярной биологии:

Перенос генетической информации идет в направлении ДНК→РНК→БЕЛОК

В 1962 г. был расшифрован генетический код.

4. Академический период с 1962г. по настоящее время, в котором с 1974 года выделяют генно-инженерный подпериод.

Основные открытия

1944г. - Доказательство генетической роли ДНК. Освальд Эйвери, Колин Мак-Леод, Маклин Мак-Карти.

1953г. - Установление структуры ДНК. Джеймс Уотсон, Френсис Крик.

1961г. - Открытие генетической регуляции синтеза ферментов. Андре Львов, Франсуа Жакоб, Жак Моно.

1962г. - Расшифровка генетического кода. Маршалл Нирнберг, Генрих Маттеи, Северо Очоа.

1967г. - Синтез in vitro биологически активной ДНК. Артур Корнберг (неформальный лидер молекулярной биологии).

1970г. - Химический синтез гена. Гобинд Корана.

1970г. - Открытие фермента обратной транскриптазы и явления обратной транскрипции. Говард Темин, Дэвид Балтимор, Ренато Дульбеко.

1974г. - Открытие рестриктаз. Гамильтон Смит, Даниэль Натанс, Вернер Арбер.

1978г. - Открытие сплайсинга. Филипп Шарп.

1982г. - Открытие автосплайсинга. Томас Чек.

Ядро эукариотической клетки при микроскопии обычно выглядит как крупная округлая структура вблизи центра клетки.



Внутри ядра находится структура, называемая ядрышком. В нем находятся хромосомы, содержащие петли ДНК и большие скопления генов рибосомной рибонуклеиновой кислоты (рРНК). Каждое такое скопление генов называется ядрышковым организатором.

Ядерная оболочка – двойная мембранная структура, которая окружает хроматин и переходит в эндоплазматический ретикулум (ЭР). Внутренняя мембрана по составу белков отличается от наружной мембраны. Внутренний слой мембраны имеет волокнистую сеть белков, называемых ламинами, которые играют ключевую роль в поддержании структурной целостности мембраны. Наружная мембрана ядра переходит в мембрану ЭР и содержит белки, необходимые для связывания рибосом.

Ядерная пора и ядерный поровый комплекс – гигантские макромолекулярные комплексы, которые обеспечивают активный обмен белков и рибонуклеопротеидов между ядром и цитоплазмой. Ядерный поровый комплекс (ЯПК) формирует цилиндр, и имеет восьмиугольную симметрию. ЯПК состоит из 100-200 белков, он имеет массу 124х106 дальтон, что примерно в 30 раз больше массы рибосомы.

Этот комплекс – основные ворота для веществ, которые постоянно перемещаются внутрь ядра и из него. Например, матричная РНК (мРНК), субъединицы рибосом, гистоны, рибосомные белки, факторы транскрипции, ионы и мелкие молекулы быстро обмениваются между ядром и полостью эндоплазматического ретикулума или цитозолем.

Хромосомы (др. греч. χρῶμα - цвет и σῶμα - тело) - нуклеопротеидные структуры в ядре эукариотической клетки (клетки, содержащей ядро), которые становятся легко заметными в определённых фазах клеточного цикла (во время митоза или мейоза). Хромосомы представляют собой высокую степень конденсации хроматина, постоянно присутствующего в клеточном ядре. Хромосома - постоянный компонент ядра, отличающийся особой структурой, индивидуальностью, функцией и способностью к самовоспроизведению, что обеспечивает их преемственность, а тем самым и передачу наследственной информации от одного поколения растительных и животных организмов к другому.В ядре каждой соматической клетки организма человека содержится 46 хромосом. Набор хромосом каждого индивидуума, как нормальный, так и патологический, называется кариотипом. Из 46 хромосом, составляющих хромосомный набор человека, 44 или 22 пары представляют аутосомные хромосомы, последняя пара - половые хромосомы. У женщин конституция половых хромосом в норме представлена двумя хромосомами X, а у мужчин - хромосомами X и У. Во всех парах хромосом как аутосомных, так и половых одна из хромосом получена от отца, а вторая - от матери. Хромосомы одной пары называются гомологами, или гомологичными хромосомами. В половых клетках (сперматозоидах и яйцеклетках) содержится гаплоидный набор хромосом, т.е. 23 хромосомы.

Хроматин - основной компонент клеточного ядра. В среднем в хроматине 40% приходится на ДНК и около 60% на белки. В структурном отношении хроматин представляет собой нитчатые комплексные молекулы дезоксирибонуклеопротеида, которые состоят из ДНК, ассоциированной с гистонами и иногда еще с негистоновыми белками. Способность к дифференциальному окрашиванию легла в основу выявления двух фракций хроматина – гетеро – и эухроматина. Хейтц, открывший это явление, нашел, что определенные участки хромосом остаются в конденсированном состоянии в течении всего клеточного цикла и назвал их гетерохроматин, а участки, деконденсирующиеся в конце митоза и слабо окрашенные – эухроматином. Гетерохроматиновые участки функционально менее активны, чем эухроматиновые, в которых и локализована большая часть известных генов. Однако, гетерохроматин имеет определенное генетическое влияние; к примеру, определяющие пол хромосомы не могут рассматриваться как генетически неактивные, хотя они часто полностью состоят из гетерохрома тина. Кроме того, установлено, что стабильность генетического выражения эухроматина обуславливается близостью к гетерохроматину.

Дезоксирибонуклеи́новая кислота́ (ДНК) - макромолекула, обеспечивающая хранение, передачу из поколения в поколение и реализацию генетической программы развития и функционирования живых организмов. Основная роль ДНК в клетках - долговременное хранение информации о структуре РНК и белков.

С химической точки зрения ДНК - это длинная полимерная молекула, состоящая из повторяющихся блоков - нуклеотидов. Каждый нуклеотид состоит из азотистого основания, сахара (дезоксирибозы) и фосфатной группы. Связи между нуклеотидами в цепи образуются за счёт дезоксирибозы и фосфатной группы. В подавляющем большинстве случаев (кроме некоторых вирусов, содержащих одноцепочечную ДНК) макромолекула ДНК состоит из двух цепей, ориентированных азотистыми основаниями друг к другу. Эта двухцепочечная молекула спирализована. В целом структура молекулы ДНК получила название «двойной спирали».

В ДНК встречается четыре вида азотистых оснований (аденин, гуанин, тимин и цитозин). Азотистые основания одной из цепей соединены с азотистыми основаниями другой цепи водородными связями согласно принципу комплементарности: аденин соединяется только с тимином, гуанин - только с цитозином. Последовательность нуклеотидов позволяет «кодировать» информацию о различных типах РНК, наиболее важными из которых являются информационные, или матричные (мРНК), рибосомальные (рРНК) и транспортные (тРНК). Все эти типы РНК синтезируются на матрице ДНК за счёт копирования последовательности ДНК в последовательность РНК, синтезируемой в процессе транскрипции, и принимают участие в биосинтезе белков (процессе трансляции).

Принципы строения ДНК

1. Нерегулярность. Существует регулярный сахарофосфатный остов, к которому присоединены азотистые основания. Их чередование нерегулярно.

2. Антипараллельность. ДНК состоит из двух полинуклеотидных цепей, ориентированных антипараллельно. 3`-конец одной расположен напротив 5`-конца другой.

3. Комплементарность (дополнительность). Каждому азотистому основанию одной цепи соответствует строго определенное азотистое основание другой цепи. Соответствие задается химией. Пурин и пиримидин в паре образуют водородные связи. В паре A-Т две водородные связи, в паре Г-Ц - три.

4. Наличие регулярной вторичной структуры. Две комплементарные, антипараллельно расположенные полинуклеотидные цепи образуют правые спирали с общей осью.

Формы двойной спирали ДНК

Существуют несколько форм двойной спирали ДНК. В основной - В-форме на виток приходится 10 комплементарных пар. Плоскости азотистых оснований перпендикулярны оси спирали. Соседние комплементарные пары повернуты друг относительно друга на 36°. Диаметр спирали 20Å, причем пуриновый нуклеотид занимает 12Å, а пиримидиновый - 8Å. А-форма - 11 пар азотистых оснований на виток. Плоскости азотистых оснований отклонены от нормали к оси спирали на 20°. Отсюда следует наличие внутренней пустоты диаметром 5Å. Высота витка 28Å. Такие же параметры у гибрида из одной цепи ДНК и одной цепи РНК. С-форма - шаг спирали 31Å, 9.3 пар оснований на виток, угол наклона к перпендикуляру 6°. Все три формы - правозакрученные спирали. Есть еще несколько форм правых спиралей и всего одна левая спираль (Z -форма ). Высота витка в Z-форме -44.5 Å, на виток приходится 12 пар нуклеотидов. Ни А-, ни Z- формы не могут существовать в водном растворе без дополнительных воздействий (белки или суперспирализация).


Ядро – постоянный компонент всех клеток многоклеточных растений и животных, а также простейших и одноклеточных водорослей. Большинство клеток имеет одно ядро. Однако есть клетки с двумя, тремя и даже с несколькими десятками или сотнями ядер. Такие клетки называются многоядерными и встречаются, например, среди одноклеточных организмов, а также в печени и костном мозге позвоночных животных.

Форма ядра и часто его размеры зависят от формы клетки. Обычно в шаровидных клетках ядро имеет округлую форму, а в клетках, вытянутых в длину, ядро также удлиненной формы.

Различают два состояния ядра: делящееся и неделящееся. Мы рассмотрим особенности строения и функции неделящихся ядер.

В них различают ядерную оболочку, ядерный сок, или кариоплазму («карион» – ядро, греч.), хроматин и ядрышки. Хромосомы формируются только в делящихся ядрах, но иногда они видны и в промежутке между делениями.

Ядерная оболочка. От цитоплазмы ядро отделено ядерной оболочкой, которая хорошо видна в световой микроскоп в форме контура, ограничивающего ядро. На электронномикроскопической фотографии, где ядерная оболочка состоит из двух мембран: наружной и внутренней. Каждая из мембран имеет типичное трехслойное строение, такое же, как наружная цитоплазматическая мембрана и мембраны других органоидов.

Ядерная оболочка не сплошная: в ней имеются многочисленные поры, которые настолько малы, что видны лишь с помощью электронного микроскопа. Диаметр пор около 300–500 А. Через поры осуществляется обмен веществ между цитоплазмой и ядром. Наружная мембрана ядерной оболочки тесно связана с эндоплазматической сетью. Во время деления ядра в большинстве клеток ядерная оболочка разрушается.

Ядерный сок (кариоплазма). Ядерный сок – это вещество полужидкой консистенции, которое находится под ядерной оболочкой и заполняет всю полость ядра. В ядерном соке располагаются ядрышки и хроматин, а в последнее время с помощью электронного микроскопа в нем обнаружены рибосомы.

Хроматин . В неделящихся ядрах хроматин часто бывает виден в форме отдельных глыбок небольших размеров или нитей. Эти хроматиновые структуры содержат дезоксирибонуклеиновую кислоту (ДНК) и белок.

Хроматин – это тот материал, из которого образуются хромосомы при делении ядер. В делящихся ядрах ДНК сосредоточена именно в хромосомах. ДНК – важнейшая часть ядра. В этом веществе заключена наследственная информация, передающаяся из поколения в поколение у каждого вида организмов.

Ядрышко. Ядрышко представляет собой плотное округлое тельце, располагающееся в ядерном соке. В ядрах разных клеток, а также и в ядре одной и той же клетки в разные моменты ее жизнедеятельности количество ядрышек, их форма и размеры могут быть разными. Часто в ядрах содержится лишь 1–2 ядрышка, но их может быть 5–7 и более. Ядрышки имеются только в неделящихся ядрах; во время деления они исчезают, а в ядрах дочерних клеток образуются заново.

В состав ядрышка входят РНК и белки. Важнейшая функция ядрышка заключается в том, что в нем происходит формирование рибосом, которые затем выходят из ядра в цитоплазму. Это значит, что рибосомы, располагающиеся на мембранах эндоплазматической сети и свободно лежащие в цитоплазме, образуются в ядрышке. Рибосомы, находящиеся в ядрышке, осуществляют синтез белков.

Взаимодействие ядра и цитоплазмы. Цитоплазма и ядро клетки находятся в теснейшей взаимосвязи друг с другом. Если из клетки удалить ядро, то цитоплазма неизбежно погибнет. В свою очередь ядро не может существовать без цитоплазмы даже в течение короткого времени. Для жизни клетки необходимо взаимодействие ядра, цитоплазмы и всех ее органоидов как единого целого. Любое повреждение вызывает в конечном итоге гибель клетки. В ней нет структурных компонентов, способных к продолжительному самостоятельному существованию. Клетка – это элементарная целостная живая система.

Одноклеточные организмы

В отличие от клеток многоклеточных организмов, образующих разнообразные органы и ткани, одноклеточные организмы (простейшие, одноклеточные водоросли, бактерии) имеют много своеобразных черт строения. Прежде всего, тело их состоит лишь из одной клетки. А любой одноклеточный организм одновременно представляет собой и клетку, и целый организм, ведущий самостоятельное существование.

Простейшие и одноклеточные водоросли. Простейшие, или одноклеточные, животные (амебы, эвглены, инфузории и др.), а также одноклеточные водоросли (хламидомонада, хлорелла и др.) имеют типичное клеточное строение: они обладают ядром, ограниченным ядерной оболочкой, у них хорошо развиты и все органоиды, известные для клеток многоклеточных организмов. Многие формы, относящиеся к этим двум группам одноклеточных, имеют хорошо развитые органоиды движения в виде ресничек и жгутиков, имеют ротовое отверстие, через которое пища проходит внутрь клетки (вспомните, как питается инфузория туфелька), и другие органоиды, обеспечивающие все процессы жизнедеятельности этих организмов. Все эти приспособления обеспечивают самостоятельное существование простейших в разнообразных условиях внешней среды.

Бактерии . Бактериальные клетки характеризуются, прежде всего, наиболее мелкими размерами. Некоторые бактерии с округлой формой тела достигают лишь 0,2 мкм в диаметре.

По ряду признаков строения бактериальные клетки отличаются от клеток простейших и многоклеточных организмов. К таким признакам относится в первую очередь отсутствие типичного ядра, которое у бактерий лишено ядерной оболочки. Ядерные элементы, содержащие ДНК, располагаются непосредственно в цитоплазме и часто имеют неправильную разветвленную форму. У бактерий органоиды цитоплазмы, например, эндоплазматическая сеть, митохондрии, имеют более простое строение, чем в клетках других организмов.

Все это служит доказательством более простого строения бактериальных клеток по сравнению с простейшими и клетками многоклеточных организмов. Несмотря на сравнительную простоту строения, бактерии – организмы, находящиеся на клеточном уровне организации. Они, подобно простейшим и одноклеточным водорослям, представляют обширную группу клеток-организмов, ведущих самостоятельное существование и приспособленных к разнообразным средам обитания.

Неклеточные организмы

Детальное изучение тонкой структуры клеток показало, что клеточная теория нашла блестящее подтверждение в строении всех многоклеточных и одноклеточных организмов. Лишь одна группа живых существ не может быть охвачена клеточной теорией, так как организмы, принадлежащие к ней, не имеют клеточного строения и представляют, поэтому неклеточную форму существования живой материи.

Вирусы. Неклеточные организмы носят название вирусов («вирус» – яд лат.). Электронномикроскопическое изучение показало, что по строению вирусы сильно отличаются от клеток. Существование вирусов открыл русский ученый Д. И Ивановский в 1892 г. Вирусы значительно меньше бактерии. Например, размеры вируса гриппа 800 А. Вирусы способны жить и размножаться только в клетках растений, животных и человека и не могут вести самостоятельное существование. Вирусы вызывают многие опасные заболевания и приносят вред здоровью человека и ущерб народному хозяйству. Вирусы – возбудители таких заболеваний, как грипп, корь, полиомиелит, оспа. Они вызывают и заболевания растений, например мозаичную болезнь табака. Листья больных растений становятся пестрыми, так как вирусы табачной мозаики разрушают хлоропласты и участки листа с разрушенными хлоропластами становятся бесцветными. Известны также вирусы, которые поселяются в клетках бактерий. Такие вирусы называются бактериофагами или просто фагами («фагос» – пожирающий, греч.). Бактериофаги полностью разрушают бактериальные клетки и потому могут быть использованы для лечения бактериальных заболеваний, например дизентерии, брюшного тифа, холеры.

Строение вирусов наиболее детально изучено на примерах вируса табачной мозаики и бактериофагов. Вирус табачной мозаики существует в форме отдельных частиц, каждая из которых имеет палочковидную форму и представляет собой цилиндр с полостью внутри. Стенка цилиндра образована молекулами белка, а внутри, под этой белковой оболочкой, располагается тяж РНК, свернутый в форме спирали.

В длину частицы вируса достигают 3000 А, и поэтому их можно видеть только с помощью электронного микроскопа. Частицы вируса поселяются в клетках листьев табака и часто образуют скопления в виде кристаллов шестигранной формы. Эти кристаллы видны в световой микроскоп.

Строение бактериофага рассмотрим на примере форм, которые поселяются в клетках кишечной палочки. Такой бактериофаг по форме тела напоминает головастика.

Длина его около 2000 А. Тело бактериофага состоит из головки, хвостика и нескольких хвостовых отростков. Снаружи головка и хвостик покрыты белковой оболочкой. Внутри головки находится ДНК, а внутри хвостика проходит канал. Когда бактериофаг проникает в клетку кишечной палочки, то сначала он прикрепляется к ее поверхности, а затем растворяет оболочку бактерии в том месте, где произошло прикрепление. ДНК бактериофага проходит в канал хвостика и впрыскивается в клетку бактерии через отверстие, образовавшееся в ее оболочке. Дальше у кишечной палочки, зараженной бактериофагом, начинает синтезироваться ДНК бактериофага, а не собственная ДНК бактерии, и в конечном итоге бактерия погибает.

Таково строение вирусов, которое действительно сильно отличается от строения клеток. Это дает нам право считать, что вирусы – неклеточные существа. Их строение значительно проще строения клетки.

Эволюция клетки. Существование организмов, не имеющих клеточного строения, служит подтверждением того, что клетки не всегда были такими, какими мы их видим и изучаем сейчас, а прошли длительный путь эволюции. Вероятно, в процессе развития жизни сначала появились какие-то неклеточные организмы, строение которых было значительно проще, чем строение самых простых, известных нам сейчас одноклеточных организмов. Затем, на следующем этапе развития появились клеточной формы существования живой материи. Это, по всей вероятности были какие-то еще очень просто организованные одноклеточные формы, которые на следующей, более высокой ступени эволюции дали начало многоклеточным организмам.

Химический состав клетки

Живая клетка характеризуется активной химической деятельностью. В ней одновременно протекают тысячи химических реакций. Вещества из внешней среды беспрерывным потоком поступают в клетку, и беспрерывно же отработанные продукты уносятся из клетки в окружающую среду. В одних участках клетки вещества подвергаются глубокому распаду, в других участках из простых низкомолекулярных веществ образуются сложные высокомолекулярные соединения.

Химическая деятельность клетки является основой ее жизни, главным условием ее развития и функционирования.

Химический состав клетки. У разных клеток обнаруживается сходство не только в строении, но и в химическом составе. Это указывает на общность происхождения клеток.

Данные об элементарном составе клеток представлены в таблице 1.

Таблица 1. Элементарный состав клеток

Как видно из таблицы, в состав клеток входит много различных элементов. Из 104 элементов периодической системы Менделеева в клетках обнаружено около 60. Следует подчеркнуть, что живая клетка состоит из тех же элементов, что и неживые объекты. Это указывает на связь и единство живой и неживой природы.

Элементы, входящие в состав клетки, удобно разделить на три группы. В первую группу входят 4 элемента: кислород, углерод, водород и азот. Содержание этих элементов в клетке наиболее велико. На их долю приходится почти 98% всего состава клетки. Следующую группу образуют элементы, содержание которых в клетке исчисляется десятыми и сотыми долями процента. Таких элементов 8: калий, сера, фосфор, хлор, магний, натрий, кальций и железо. В сумме они составляют примерно 1,9%. К третьей группе относятся все остальные элементы. Они содержатся в клетке в исключительно малых количествах (менее 0,01%). Их называют, поэтому микроэлементами.

На атомном уровне различий между химическим составом органического и неорганического мира нет. Различия обнаруживаются на более высоком уровне организации – на молекулярном. Конечно, не все соединения, содержащиеся в клетке, специфичны для живой природы. Такие вещества, как вода и соли, распространены и вне живого. Но в организмах и продуктах их жизнедеятельности уже давно обнаружено присутствие большого числа углеродсодержащих соединений, характерных только для организмов. Эти соединения и называются, поэтому органическими. Содержание основных химических соединений, обнаруженных в клетках, представлено в таблице 2.

Таблица 2. Содержание основных химических соединений в клетках

Вода

Из таблицы видно, – что среди веществ клетки на первом месте стоит вода. Содержание воды в разных клетках колеблется; обычно она составляет около 80% их массы. Высокое содержание воды в клетке – необходимое условие ее жизненной активности. Чем выше содержание воды в клетке, тем интенсивнее ее жизнедеятельность. Так, в быстрорастущих клетках эмбрионов человека и животных содержится около 95% воды. В клетках взрослого организма воды до 80%, а к старости снижается до 60%. Высокоактивные клетки мозга содержат около 85% воды, а в малоактивных клетках жировой ткани содержание воды не превышает 40%. Смерть в результате лишения воды наступает раньше, чем от отсутствия пищи. Потеря более 20% массы за счет воды для человека смертельна.

Роль воды в клетке велика и многообразна. Вода определяет многие физические свойства клеток – их объем, упругость. Весьма существенна роль воды как растворителя. Многие вещества поступают в клетки в водном растворе, и в водном же растворе отработанные продукты выводятся из клеток. Большинство химических реакций, протекающих в клетке, может идти только в водном растворе. Далее вода непосредственно участвует во многих химических реакциях клетки. Так, например, расщепление белков, жиров, углеводов и других веществ происходит в результате химического взаимодействия этих веществ с водой. Наконец, вода играет существенную роль в распределении и отдаче тепла в клетке.

Биологическая роль воды определяется особенностями ее внутримолекулярной структуры, полярностью ее молекул, способностью образовывать водородные связи. Этими свойствами объясняется, в частности, высокая удельная теплоемкость воды, что, имеет значение для регуляции тепла в клетке. При охлаждении или повышении температуры внешней среды тепло поглощаемся или выделяется благодаря разрыву или новообразованию водородных связей между молекулами воды. Таким образом, колебания температуры внутри клетки, несмотря на резкие ее изменения во внешней среде, смягчаются. Особенностями внутримолекулярной структуры воды объясняются и ее выдающиеся "свойства как растворителя. В воде растворяются очень многие вещества: соли, различные органические вещества – белки, углеводы и т.д. Вещество растворяется в том случае, если энергия притяжения молекул воды к молекулам вещества оказывается больше, чем энергия притяжения между молекулами воды. Вещества, у которых энергия притяжения к воде высокая и, следовательно, растворимость особенно большая, называются гидрофильными («гидро» – вода, «филео» – люблю, греч.). Существует большая группа веществ, трудно или практически почти совсем нерастворимых в воде. К. ним относится большинство неполярных веществ: жиры, липоиды, каучук, парафин и др. Энергия притяжения молекул воды к неполярным молекулам оказывается меньшей, чем энергия водородных связей. Вещества, у которых энергия притяжения к воде особенно слабая и растворимость соответственно очень низкая, называются гидрофобными, («гидро» – вода, «фобос» – страх, греч.).

Нерастворимость гидрофобных веществ в воде используется клеткой: в состав клеточных мембран входят неполярные вещества (липоиды), ограничивающие переход воды из наружной среды в клетку и обратно, а также из одних участков клетки в другие.

Неорганические составные части клетки

Из химических элементов, входящих в состав клеток, часть участвует в построении органических соединений, другая часть находится в виде неорганических веществ. Из углерода, водорода и кислорода состоят углеводы и жиры. Во все белки и нуклеиновые кислоты, кроме этих элементов, входит азот. Многие белки содержат серу. Фосфор – составная часть нуклеиновых кислот, железо входит в состав гемоглобина, магний содержится в хлорофилле, йод участвует в построении молекулы тироксина (гормона щитовидной железы), кобальт входит в состав витамина B 12 и т.д.

Из неорганических веществ клетки большая часть находится в виде солей. Наиболее важны из катионов: К + , Na+, Ca 2+ и Mg 2 +, из анионов: НРО 2 4 -, Н 2 РО 4 – С1-, НСО 3 ~.

Содержание катионов и анионов в клетке и в среде ее обитания, как правило, резко различно. Так, внутри клетки довольно высокая концентрация калия и очень малая натрия. Напротив, в среде, окружающей клетку, – в плазме крови, в морской воде – мало калия и довольно высокая концентрация натрия. В мышечных клетках калия в 30 раз больше, чем в крови, натрия же в 10 раз меньше, чем в крови. Пока клетка жива, это различие в концентрации К + и Na+ между клеткой и средой стойко удерживается. После смерти клетки содержание К + и Na+ в клетке и среде быстро выравнивается. Наличие в клетке и в окружающей среде неорганических ионов имеет важное значение для нормального функционирования клетки. При отсутствии ионов клетка утрачивает возбудимость и погибает.

Минеральные вещества содержатся в клетке не только в растворенном, но и в твердом состоянии; в частности, прочность и твердость костной ткани, а также раковин моллюсков обязаны присутствию в них нерастворимого фосфорнокислого кальция.

Если в среде, окружающей клетку, содержатся в недостаточном количестве элементы Р, Fe, Mg, микроэлементы I, Co, Zn и др., то нарушается образование важных соединений: нуклеиновых кислот, гемоглобина, хлорофилла, тироксина, витамина B 12 и т.д. – ив результате возникают различные заболевания, задержка роста и развития.



В состав ядра входит хроматин, ядрышко, кариоплазма (нуклеоплазма), ядерная оболочка.

В клетке, которая делится, в большинстве случаев имеется одно ядро, но встречаются клетки, которые имеют два ядра (20% клеток печени двуядерные), а также многоядерные (остеокласты костной ткани).

ЁРазмеры - колеблятся от 3-4 до 40 мкм.

Каждый тип клетки характеризуется постоянным соотношением объема ядра к объему цитоплазмы. Такое соотношение носит название индекса Гертвинга. В зависимости от значения этого индекса клетки делятся на две группы:

1. ядерные - индекс Гертвинга имеет большее значение;

2. цитоплазматические - индекс Гертвинга имеет незначительные значения.

ЁФорма - может быть сферической, палочковидной, бобовидной, кольцевидной, сегментированной.

ЁЛокализация - ядро всегда локализуется в определенном месте клетки. Например, в цилиндрических клетках желудка оно находится в базальном положении.

Ядро в клетке может находится в двух состояниях:

а) митотическом (во время деления);

б) интерфазном (между делениями).

В живой клетке интерфазное ядро имеет вид оптически пустого, обнаруживается только ядрышко. Структуры ядра в виде нитей, зерен можно наблюдать только при действии на клетку повреждающих факторов, когда она переходит в состояние паранекроза (пограничное состояние между жизнью и смертью). С этого состояния клетка может вернуться к нормальной жизни или погибнуть. После гибели клетки морфологически, в ядре различают следующие изменения:

1) кариопикноз - уплотнение ядра;

2) кариорексис - разложение ядра;

3) кариолизис - растворение ядра.

Функции: 1) хранение и передача генетической информации,

2) биосинтез белка, 3) образование субъединиц рибосом.

Хроматин

Хроматин (от греч. сhroma - цвет краска) - это основная структура интерфазного ядра, которая очень хорошо красится основными красителями и обуславливает для каждого типа клеток хроматиновый рисунок ядра.

Благодаря способности хорошо окрашиваться различными красителями и особенно основными этот компонент ядра и получил название «хроматин» (Флемминг 1880).

Хроматин является структурным аналогом хромосом и в интерфазном ядре представляет собой несущие ДНК тельца.

Морфологически различают два вида хроматина:

1) гетерохроматин;

2) эухроматин.

Гетерохроматин (heterochromatinum) соответствует частично конденсированным в интерфазе участкам хромосом и является функционально неактивным. Этот хроматин очень хорошо окрашивается и именно его можна видеть на гистологических препаратах.

Гетерохроматин в свою очередь делится на:

1) структурный; 2) факультативный.

Структурный гетерохроматин представляет участки хромосом, которые постоянно находятся в конденсированном состоянии.

Факультативный гетерохроматин - это гетерохроматин, способный деконденсироваться и превращатся в эухроматин.

Эухроматин - это деконденсированные в интерфазе участки хромосом. Это рабочий, функционально активный хроматин. Этот хроматин не окрашивается и не обнаруживается на гистологических препаратах.

Во время митоза весь эухроматин максимально конденсируется и входит в состав хромосом. В этот период хромосомы не выполняют никаких синтетических функций. В связи с этим хромосомы клеток могут находится в двух структурно-функциональных состояниях:

1) активном (рабочем), иногда они частично или полностью деконденсированы и с их участием в ядре происходят процессы транскрипции и редупликации;

2) неактивном (нерабочем, метаболического покоя), когда они максимально конденсированы выполняют функцию распределения и переноса генетического материала в дочерние клетки.

Иногда в отдельных случаях целая хромосома в период интерфазы может оставаться в конденсированном состоянии, при этом она имеет вид гладкого гетерохроматина. Например, одна из Х-хромосом соматических клеток женского организма подлежит гетерохроматизации на начальных стадиях эмбриогенеза (во время дробления) и не функционирует. Этот хроматин называется половых хроматином или тельцами Барра.

В разных клетках половой хроматин имеет различный вид:

а) в нейтрофильных лейкоцитах - вид барабанной палочки;

б) в эпителиальных клетках слизистой - вид полусферической глыбки.

Определение полового хроматина используется для установления генетического пола, а также для определения количества Х-хромосом в кариотипе индивидума (оно равняется количеству телец полового хроматина+1).

При электронно-микроскопических исследованиях установлено, что препараты выделенного интерфазного хроматина содержат элементарные хромосомные фибриллы толщиной 20-25 нм, которые состоят из фибрилл толщиной 10 нм.

В химическом отношении фибриллы хроматина представляют собой сложные комплексы дезоксирибонуклеопротеидов, в состав которых входят:

б) специальные хромосомные белки;

Количественное соотношение ДНК, белка и РНК составляет 1:1,3:0,2. На долю ДНК в препарате хроматина приходится 30-40%. Длина индивидуальных линейных молекул ДНК колеблется в непрямых пределах и может достигать сотен микрометров и даже сантиметров. Суммарная длина молекул ДНК во всех хромосомах одной клетки человека составляет около 170 см, что соответствует 6х10 -12 г.

Белки хроматина составляют 60-70% от его сухой массы и представлены двумя группами:

а) гистоновыми белками;

б) негистоновыми белками.

ЁГистоновые белки (гистоны ) - щелочные белки, содержащие основные аминокислоты (главным образом лизин, аргинин) располагаются неравномерно в виде блоков по длине молекулы ДНК. Один блок содержит 8 молекул гистонов, которые образуют нуклеосому. Размер нуклеосомы около 10 нм. Нуклеосома образуется путем компактизации и сверхспирализации ДНК, что приводит к укорачиванию длины хромосомной фибриллы примерно в 5 раз.

ЁНегистоновые белки составляют 20% от количества гистонов и в интерфазных ядрах образуют внутри ядра структурную сеть, которая носит название ядерного белкового матрикса. Этот матрикс представляет основу, которая определяет морфологию и метаболизм ядра.

Перихроматиновые фибриллы имеют толщину 3-5 нм, гранулы имеют диаметр 45нм и интерхроматиновые гранулы имеют диаметр 21-25 нм.

Ядрышко

Ядрышко (nucleolus) - самая плотная структура ядра, которая хорошо видна в живой неокрашенной клетке и является производным хромосомы, одним из ее локусов с наиболее высокой концентрацией и активным синтезом РНК в интерфазе, но не является самостоятельной структурой или органеллой.

ЁРазмер - 1-5 мкм.

ЁФорма - сферическая.

Ядрышко имеет неоднородную структуру. В световом микроскопе видна его тонковолокнистая организация.

Электронная микроскопия позволяет обнаружить два основных компонента:

а) гранулярный; б) фибриллярный.

Гранулярный компонент представлен гранулами с диаметром 15-20 нм, это созревающие субъединицы рибосом. Иногда гранулярный компонент образует нитчатые структуры - нуклеолонемы, толщиной около 0,2 мкм. Локализуется гранулярный компонент по периферии.

Фибриллярный компонент представляет собой рибонуклеопротеидные тяжи предшественников рибосом, которые сосредоточены в центральной части ядрышка.

Ультраструктура ядрышек зависит от активности синтеза РНК: при высоком уровне синтеза в ядрышке выявляется большое число гранул, при прекращении синтеза количество гранул снижается и ядрышки превращаются в плотные фибриллярные тяжи базофильной природы.

Ядерная оболочка

Ядерная оболочка (nuclolemma) состоит из:

1. Внешней ядерной мембраны (m. nuclearis externa),

2.Внутренней мембраны (m. nuclearis interna), которые разделены перинуклеарным пространством или цистерной ядерной оболочки (cisterna nucleolemmae), шириной 20-60 нм.

Каждая мембрана имеет толщину 7-8нм. В общем виде ядерная оболочка напоминает полый двухслойный мешок, который отделяет содержимое ядра от цитоплазмы.

Наружная мембрана ядерной оболочки , которая непосредственно контактирует с цитоплазмой клетки, имеет целый ряд структурных особенностей, которые позволяют отнести ее к собственно мембранной системе эндоплазматической сети. К таким особенностям относится: наличие на ней со стороны гиалоплазмы многочисленных полирибосом, а сама внешняя ядерная мембрана может прямо переходить в мембраны гранулярной эндоплазматической сети. Поверхность наружной ядерной мембраны в большинстве животных и растительных клеток не является гладкой и образует различных размеров выросты в сторону цитоплазмы в виде пузырьков или длинных трубчатых образований.

Внутренняя ядерная мембрана связана с хромосомным материалом ядра. Со стороны кариоплазмы к внутренней ядерной мембране прилегает так называемый фибриллярный слой, состоящий из фибрилл, но он характерен не для всех клеток.

Ядерная оболочка не является сплошной. Наиболее характерными структурами ядерной оболочки являются ядерные поры. Ядерные поры образуются в результате слияния двух ядерных мембран. При этом формируются округлые сквозные отверстия (перфорации, annulus pori), которые имеют диаметр около 80-90 нм. Эти отверстия ядерной оболочки заполнены сложноорганизованными глобуллярными и фибриллярными структурами. Совокупность мембранных перфораций и этих структур получило название комплекса поры (complexus pori). Комплекс поры состоит из трех рядов гранул по восемь штук в каждом ряду, диаметр гранул 25 нм, от этих гранул отходят фибриллярные отростки. Гранулы располагаются на границе отверстия в ядерной оболочке: один ряд лежит со стороны ядра, второй - со стороны цитоплазмы, третий в центральной части поры. Фибриллы, отходящие от периферических гранул, могут сходиться в центре и создавать, как бы перегородку, диафрагму поперек поры (diaphragma pori). Размеры пор у данной клетки обычно стабильны. Количество ядерных пор зависит от метаболической активности клеток: чем интенсивнее синтетические процессы в клетке, тем больше пор на единицу поверхности клеточного ядра.

ЁФункции:

1. Барьерная - отделяет содержимое ядра от цитоплазмы, ограничивает свободный транспорт макромолекул между ядром и цитоплазмой.

2. Создание внутриядерного порядка - фиксация хромосомного материала в трехмерном просвете ядра.

Кариоплазма

Кариоплазма - это жидкая часть ядра, в которой располагаются ядерные структуры, она является аналогом гиалоплазмы в цитоплазматической части клетки.

Репродукция клеток

Одним из наиболее важных биологических явлений, которое отражает общие закономерности и есть неотъемлемым условием существовния биологических систем в течение достаточно длительного периода времени является репродукция (воспроизведение) их клеточного состава. Размножение клеток, согласно клеточной теории, осуществляется путем деления исходной. Это положение является одним из основных в клеточной теории.