Камеральное дешифрирование аэрофотоснимков. Топографическое дешифрирование аэроснимков. Дешифрирование нелесных площадей. Закрепление на местности точек съемочного обоснования

Предварительное дешифрирование аэрофотоснимков проводится для всей площади с использованием стереоскопа.
Дешифрирование аэрофотоснимков открытой местности, где горные породы с поверхности слабо или вовсе не прикрыты растительным покровом, не вызывает особых затруднений. Чем резче отличаются друг от друга породы по цвету, крепости, трещиноватости и степени вы-ветрелости, тем отчетливее они будут различаться между собой на поверхности и, следовательно, на снимке. Особенно хорошо при этом выявляются тектонические структуры и элементы тектонических нарушений.
Камеральное (окончательное) дешифрирование аэрофотоснимков проводится после завершения полевых работ.
Это очень важно при дешифрировании аэрофотоснимков, когда должны быть получены резкие контуры и хорошая деталируемость объекта, в то время как низкие пространственные частоты, например тени облаков, не представляют никакого интереса или даже могут служить помехами при дешифрировании. В связи с этим регулирование величины контраста следует вести таким образом, чтобы прежде всего добиваться подъема высоких и ослабления низких пространственных частот. Поскольку эти требования встречаются в большинстве задач дешифрирования, все методы регулирования контраста должны быть в этом смысле эффективны.
Трещины кливажа среди плотно залегающих песчано-сланцевых отложений юры. Аэрофотоснимок, масштаб 1. 20 000 (по М. Н. Петрусевичу. Значительно сложнее обстоит дело с дешифрированием аэрофотоснимков закрытых районов, где горные породы скрыты почвенным слоем и растительностью. Однако и в этом случае применение ланд-шафтно-геологического метода дешифрирования очень часто дает хорошие результаты.
Методика дешифрирования ИК-изображения использует прие - 1Ы, анологичные дешифрированию аэрофотоснимков: выделение: онтуров, типологическую классификацию их, наземное дешифри-ювание на ключевых участках, идентификацию ИК-изображения наземными объектами. Однако дешифрирование ИК-изображения: вязано с серьезными трудностями.
Инженерно-геологические работы заключаются в составлении геологических карт и профилей по данным дешифрирования аэрофотоснимков, результатам электропрофилирования и проходки разведочных выработок. Большего внимания требуют переходы через ирригационные системы, где глубина выработок определяется заложением трубопровода. Участки с интенсивной засоленностью при инженерно-геологическом обследовании необходимо оконту-ривать как неблагоприятные для пересечения трассой. Устанавливается максимальное значение естественной влажности и степени засоления грунтов по результатам химических анализов водных вытяжек из проб. Особое внимание на таких участках уделяется установлению коррозионного воздействия грунтов на металлические конструкции.
Бывая в отряде В. В. Эза, я видел, что их работа сводится к дешифрированию аэрофотоснимков и маршрутам по долинам рек с зарисовкой складчатых дислокаций.
Строение зоны Уралтау осложнено также многочисленными разрывными нарушениями, выявленными при полевом картировании и по результатам дешифрирования аэрофотоснимков. Большинство из них относится к категории мелких разрывов, группирующихся в разноориентированные системы протяженностью до нескольких километров. С ними связаны малоамплитудные смещения пластов горных пород и возникновение зон повышенного рассланцевания.
Сине-желтое тонирование из-за простоты и низкой стоимости можно весьма успешно использовать вместо метода нерезкой маски; прежде всего это относится к дешифрированию аэрофотоснимков. Было установлено, что благодаря выравниванию контраста и лучшей передаче деталей наблюдается заметное улучшение по сравнению с необработанным негативом. Это хорошо заметно на приведенных здесь снимках (фиг.
Точность дешифрирования количественных и качественных показателей объектов ландшафтной оболочки Земли по материалам ДС в значительной степени определяется качеством аэрофотоснимков и растровых изображений, полученных из атмосферы и космоса. Для успешного дешифрирования аэрофотоснимков определяющее значение имеет совокупность прямых и косвенных признаков дешифрирования, для дешифрирования изображений из космоса особое внимание должно быть уделено правильному соотношению цветов, тонов и цветовых оттенков. При первоначальной (предварительной) обработке материалов ДС необходимо стремиться к получению максимально четкого изображения, потому что невозможно сказать заранее, какой или какие показатели станут определяющими при распознавании объектов.
Многие производители предварительно обработанных изображений предлагают потребителю совокупности взаимоувязанных растровых и векторных изображений. Особенно популярными являются спутниковые изображения среднего и высокого разрешения, совмещенные с детальными векторными картами, полученными путем дешифрирования аэрофотоснимков или в результате наземной геодезической съемки. Такого рода карты становятся очень популярными из-за хорошего зрительного восприятия и простоты актуализации главных носителей полезной информации - векторных файлов.
Способность выделять информативное содержание, адекватно поставленной задаче, требует специального обучения. Примером, в котором отчетливо наблюдается процесс такого выделения, может быть дешифрирование аэрофотоснимков. В этой операции наблюдатель выделяет некоторые свойства сигналов (изображения) в качестве наиболее информативных с целью последующего опознания объектов. Причем выделенные свойства как бы превращаются в оперативные единицы восприятия , с которыми в дальнейшем и работает оператор. Иными словами, оператор отсеивает часть первоначально выделенных признаков, группирует их, выделяет новые; одни признаки как бы подчеркиваются и усиливаются, другие затушевываются. Наблюдатель непрерывно сравнивает воспринимаемые сигналы с некоторыми эталонами, хранящимися в памяти в форме представления.
Для выполнения указанных требований рекомендуется следующая примерная методика сбора исходных данных. Категории грунтов по сложности пх механизированной разработки определяют с помощью картографического материала масштабов 1: 1 000 000 на стадии ТЭО и 1: 100 000 - 1: 25 000-па стадии технического проекта с одновременным использованием геологических карт четвертичных отложений и аэрофотоснимков, получаемых в соответствующих организациях. В результате дается предварительная инженерно-геологическая оценка трассы газопровода и отводов. Дешифрирование аэрофотоснимков выполняют по мето-дпке, разработанной Лабораторией аэрометодов НПО Аэрогеология Министерства геологии СССР.

Разрешающая способность космических фотоснимков достигает 40 м, телевизионных 1 - 3 км. Изучение космоснимков позволяет выделять региональные и глобальные геоструктуры, оценивать динамику тектонических процессов, анализировать глубинное строение территории, структурные закономерности распределения полезных ископаемых, в том числе нефти и газа, а также составлять обзорные геологические и тектонические карты больших территорий. Признаки, используемые при дешифрировании космоснимков, в основном те же, что и при дешифрировании аэрофотоснимков. Существенные различия заключаются в том, что на космоснимках происходит естественная генерализация изображения объектов, интеграция отдельных черт строения в крупные системы, не улавливаемые на аэрофотоснимках. Уникальной особенностью космических снимков является возможность охвата всего явления в целом. Дистанционные методы сопровождаются полевой наземной привязкой выбранных эталонных участков или объектов.
Суть вопроса заключается в представлении цифровой моделью реальных условий местности, ограниченной пределами теоретически обоснованной области поиска оптимальной трассы, и решении задач оптимального проектирования по этой модели. В результате появляется возможность перехода к оптимизации технических решений на основе многовариантного поиска с применением ЭВМ, к автоматизации проектирования в целом. Решение этой задачи требует внедрения в практику проектирования новой технологии изысканий с широким применением аэрометодов и ЭВМ при дешифрировании аэрофотоснимков.
Изучение природной среды в инфракрасной области спектра проводится в трех зонах: ближней (Я 0 7 - 2 5 мкм), где регистрируется длинноволновое отражение солнечного света, средней (Я 3 - 5 5 мкм) и дальней (Я8 - 14 мкм), где регистрируется собственное тепловое излучение Земли. Начало изучения природной среды в области ИК-спектра относится к 60 - м годам, когда японские ученые описали первый опыт по аэросъемке на инфракрасную пленку, показали преимущества инфракрасных снимков перед панхроматическими. Описаны случаи применения инфракрасных аэроснимков, в частности дешифрирование на них разломов, к которым приурочены увлажненные зоны. Подчеркивается важность совместного дешифрирования панхроматических и инфракрасных аэрофотоснимков.
Приведенные соображения показывают случаи и степень выгодности фотографирования в видимых и невидимых (инфракрасных) лучах. Достаточно сильное развитие водяной дымки делает совершенно невозможным фотографирование через нее даже инфракрасными лучами. Фотоотпечатки, сделанные с аэронегативов, полученных при съемке инфракрасными лучами, характеризуются повышенными контрастами по сравнению с обычными и дают цветопередачу, значительно отличающуюся от нормальной. Это объясняется тем, что отражательная способность растительности в видимых лучах почти одинакова для разных участков спектра и мала вообще. Для инфракрасных же лучей отражательная способность разных видов растительности достаточно велика (до 90 %) и различается в зависимости от вида растительности; эти обстоятельства облегчают дешифрирование аэрофотоснимков. Перечисленные особенности фотографирования в инфракрасных лучах позволяют применять их при съемке в ухудшенных атмосферно-оптич. Трудности в применении производственной съемки (аэрофотосъемки) в инфракрасных лучах объясняются следующим, а) Сенсибилизация эмульсий к инфракрасной части спектра не дает достаточно большой общей светочувствительности, что ограничивает случаи применения фотографирования в инфракрасных лучах; чем глубже область сенсибилизации, тем меньше обычно бывает степень светочувствительности. Недостаточная светочувствительность требует применения гиперсенсибилизации, в результате к-рой помимо увеличения светочувствительности возрастает склонность эмульсии к быстрому разложению (сильной вуали); кроме этого проведение гиперсенсибилизации в массовом объеме при полевой обстановке очень сложно, ненадежно и неэкономично, б) Необходима специальная оптика - светосильная и сфокусированная так, чтобы инфракрасные лучи сходились в одном фокусе.

10. ТОПОГРАФИЧЕСКОЕ ДЕШИФРИРОВАНИЕ АЭРОСНИМКОВ

10.1. При дешифрировании аэроснимков выявляют и распознают изображения топографических объектов, а затем вычерчивают их соответствующими условными знаками.

В процессе дешифрирования должны быть определены или перенесены с материалов картографического значения необходимые характеристики объектов, собраны и установлены географические названия. Объекты, не изобразившиеся на аэроснимках из-за малых размеров или недостаточного контраста с фоном, а также объекты, появившиеся на местности после аэрофотосъемочных работ, подлежат досъемке в натуре. Изображения объектов, исчезнувших после выполнения аэрофотосъемки, следует при дешифрировании перечеркивать синими линиями.

Полнота и детальность дешифрирования определяются требованиями к содержанию топографических карт, особенностями местности и масштабом создаваемой карты.

10.2. Дешифрирование при стереотопографической съемке выполняют на фотопланах, фотосхемах или аэроснимках. При этом аэроснимки и фотосхемы, на которых закрепляют результаты дешифрирования, должны быть примерно приведены к масштабу создаваемой карты и отпечатаны на матовой фотобумаге.

Если дешифрирование производится до изготовления фотопланов, то аэроснимки приводят к масштабу карты по значениям высоты фотографирования.

10.3. Дешифрирование при стереотопографической съемке выполняется преимущественно путем сочетания камерального и полевого методов. Применяется также сплошное камеральное и сплошное полевое дешифрирование.

В рабочем проекте на производство дешифрирования (например, на фотосхемах) должны быть показаны участки, подлежащие сплошному камеральному и сплошному полевому дешифрированию, намечены для остальной территории маршруты полевого дешифрирования, станции наблюдений и площадки для создания эталонов дешифрирования.

10.4. Сплошное камеральное дешифрирование применяется, когда в пределах территории работ экспедиции имеются недоступные и труднодоступные участки (высокогорья, непроходимые болота, песчаные массивы и т.д.). Основой дешифрирования в этом случае будут являться географические описания, карты смежных масштабов, материалы и эталоны дешифрирования, ранее изготавливавшиеся на аналогичные типы местности в других районах.

Сплошное полевое дешифрирование следует производить в крупных населенных пунктах и на участках, где сосредоточено много топографических объектов, не дешифрирующихся камерально. Сплошное полевое дешифрирование, особенно на больших площадях, целесообразно выполнять на фотопланах.

10.5. При сочетании камерального и полевого (наземного или аэровизуального) дешифрирования последовательность работ определяется изученностью района съемки, знакомством исполнителей с характером ландшафта и обеспеченностью материалами картографического значения.

В изученных районах полевое дешифрирование выполняют после камерального; в порядке его доработки и контроля с одновременным установлением характеристик, которые не могут быть определены по аэроснимкам (материал построек, глубина колодцев и др.), и сбором названий.

В районах, недостаточно обеспеченных материалами картографического значения, сначала проводят полевое маршрутное дешифрирование со станциями наблюдения и созданием эталонов дешифрирования типичных ландшафтов, а затем выполняют камеральное дешифрирование.

10.6. Дешифрирование по наземным маршрутам осуществляют с охватом полосы шириной порядка 250 м в лесах и от 500 до 1000 м в открытой местности. При этом встречающиеся по ходу топографические объекты опознают и фиксируют упрощенными знаками или сокращенными надписями и определяют требующиеся характеристики объектов. Установленные по маршруту особенности местности должны быть охарактеризованы в виде соответствующих записей, зарисовок и фотографий с тем, чтобы использовать их в дальнейшем при камеральном дешифрировании и стереорисовке рельефа.

В районах труднодоступных или с однообразными ландшафтами полевое наземное дешифрирование выполняется по отдельным характерным для данной местности участкам, соединяемым сетью дешифровочных маршрутов. На каждый такой участок составляется эталон дешифрирования в виде одной или двух полностью отдешифрированных стереопар аэроснимков с приложением описаний контуров, как при дешифрировании по маршрутам и на станциях наблюдения (см.п.10.7 ).

10.7. Для выборочного детального изучения местности в натуре и выявления природных взаимосвязей топографических объектов по ходу маршрута выбирают станции наблюдения. Эти станции приурочиваются к участкам, наиболее типичным для данной территории. Характеристика местности и особенностей ее аэрофотоизображения на этих станциях дается на площади не менее 4 кв.см в масштабе аэрофотоснимка. В пределах этой площади условные знаки не вычерчивают, а все контуры, отличающиеся тоном или структурой аэрофотоизображения, нумеруют и описывают. Топограф должен при этом выявить взаимосвязи различных элементов местности (например, влияние высоты, ориентировки и крутизны склонов местности, а также условий увлажнения, на изменение растительности) и их проявление в характере аэрофотоизображения. На станциях наблюдения, кроме того, определяют такие характеристики объектов, как скорости течения рек, глубина болот и т.д.

10.8. Маршруты дешифрирования прокладываются:

через населенные пункты, которые не выделены особо для выполнения в их пределах сплошного полевого дешифрирования;

вдоль основных дорог, линий электропередачи и связи; трубопроводов, русел рек, замаскированных деревьями;

вдоль свободных рамок трапеций;

по избранным направлениям, необходимым для распознавания аэрофотоизображения растительного покрова и грунтов, изучения форм рельефа, показываемых условными знаками и т.п., и определения характеристик объектов дешифрирования, которые нельзя получить в камеральных условиях.

10.9. Аэровизуальное дешифрирование выполняется в дополнение к наземному или взамен него (особенно в труднодоступных районах). Для аэровизуального дешифрирования используются вертолеты и легкие самолеты. Режим аэровизуального полета при соблюдении технико-эксплуатационных условий определяется природой дешифрируемых объектов и свойствами наблюдателя. Высота полета рекомендуется в пределах 200-300 м, скорость 60-75 км в час.

10.10. Дешифрирование аэроснимков с воздуха складывается из подготовительных работ, наблюдений в полете и обработки материалов.

В процессе подготовки изучают результаты предварительного камерального дешифрирования, проектируют и размечают на фотосхемах трассы полетов, проводят тренировку наблюдателей.

Работа в полете заключается в обследовании с воздуха неотдешифрированных камерально участков и выявлении не распознающихся на аэроснимках объектов. Результаты наблюдений фиксируют условными знаками или наколами с номерами объектов и записью на маршрутных или площадных фотосхемах или с помощью магнитофона, нанесением не изобразившихся на аэроснимках объектов по смежным контурам и времени пролета ориентиров, а также с помощью визирной палетки и бортового фотографирования.

Аэровизуальное дешифрирование по заданным отдельным маршрутам дополняют при необходимости наблюдениями с малых высот, на виражах и при зависании вертолета, а для создания эталонов дешифрирования и получения некоторых характеристик (см. п. 10.5 и 10.7 ) производят наземные наблюдения при посадках на избранных участках.

Обработка материалов аэровизуального дешифрирования с закреплением его результатов на фотосхеме должна выполняться сразу же после каждого полета.

10.11. Дешифрирование участков, расположенных между наземными или аэровизуальными маршрутами полевого дешифрирования, производится камерально, как правило, одновременно с рисовкой рельефа на универсальных стереофотограмметрических приборах (в процессе составления оригинала карты) и выполняется в экспедиции или в предприятии.

10.12. Отдешифрированные материалы должны выборочно контролироваться по специальным маршрутам начальником партии, редактором и руководством экспедиции.

10.13. По завершении дешифрирования топограф осуществляет сводки элементов ситуации по границам рабочих площадей между смежными аэроснимками или фотосхемами. Для облегчения сводок эти границы намечаются так, чтобы они не пересекали сложные объекты, например населенные пункты. По внешним рамкам участка, отдешифрированного одним исполнителем, изготавливаются выкопировки.

10.14. В результате выполнения работ должны быть сданы:

отдешифрированные фотопланы, фотосхемы или аэроснимки;

ведомости установленных названий;

журналы маршрутного дешифрирования с приложением наземных и бортовых фотографий характерных объектов местности (с негативами).

11. РЕДАКЦИОННЫЕ РАБОТЫ

11.1. Целью редакционных работ, проводимых на всех этапах топографической съемки, является обеспечение достоверности и полноты содержания создаваемых карт, географической правильности и наглядности изображения местности, а также единства в показе однородных объектов на всех трапециях территории съемки. Как правило, эти работы должен выполнять специально выделенный инженер-редактор.

11. 2. В состав редакционных работ входят:

предварительное изучение территории съемки по имеющимся материалам и в натуре, выявление характерных особенностей местности, подлежащих обязательному отображению на создаваемых картах;

обеспечение своевременного сбора и анализ материалов картографического значения, а также определение методики их использования;

разработка указаний в виде редакционной записки или редакционной схемы по проведению дешифрирования и съемки рельефа (включая составление образцов), участие в проектировании маршрутов полевого дешифрирования и станций наблюдения;

инструктирование исполнителей по вопросам содержания данных листов карты, применения условных знаков, дешифрирования и изображения рельефа;

участие в руководстве работами по полевому (наземному, аэровизуальному) и камеральному дешифрированию аэроснимков, рисовке рельефа и составлению оригиналов карт;

контроль за качеством указанных работ по ходу их выполнения;

организация транскрибирования географических названий, помещаемых на топографических картах, а также названий геодезических пунктов;

редакционный просмотр законченных материалов дешифрирования и оригиналов топографических карт.

11.3. До начала полевых работ и в ходе их редактором (или под его руководством) должны быть выявлены, собраны и использованы следующие материалы:

изданные топографические карты;

данные геодезических обследований местности и отчеты о ранее выполненных съемках;

ведомственные планово-картографические материалы: планшеты крупномасштабных съемок, фотопланы с результатами сельскохозяйственного дешифрирования, планы земель колхозов и совхозов, лесоустроительные планшеты, планы лесонасаждений и схематические карты лесхозов, планы торфяных месторождений, почвенные, геологические и геоморфологические карты, схематические карты линий электропередачи и связи, продольные профили железнодорожного пути, линейные графики автомобильных дорог, навигационные и лоцманские карты, схемы административных границ и областные карты, карты магнитных склонений и т.п.;

различные справочные материалы и в том числе: справочники административно-территориального деления, тарифные руководства и другие справочники по железнодорожным и водным путям сообщения, справочники гидрометеослужбы, института земного магнетизма, торфяного фонда и т.п.;

списки населенных пунктов с указанием числа домов, количества жителей, наличия отделений связи, сельсоветов и др.;

таблицы среднегодовых изменений магнитного склонения;

лоции и данные водомерных постов, выписки из паспортных ведомостей колодцев и источников, лесотаксационных описаний, геологических отчетов.

11.4. В результате анализа материалов картографического значения редактором должны быть даны указания, какие из материалов надлежит непосредственно использовать при дешифрировании и составлении оригиналов карт, какие применять для справок общего характера. Необходимо предусмотреть проверку правильности географических названий и тех характеристик объектов, которые переносят с ведомственных материалов.

11.5. Редакционный просмотр законченных материалов дешифрирования и полевых оригиналов карт осуществляется после корректуры и приемки их начальниками партий (бригадирами камеральной части экспедиции). При этом проверяется правильность изображения элементов местности действующими условными знаками, достаточность характеристик объектов, полнота и достоверность географических названий, согласованность изображения контуров и рельефа, правильность размещения надписей отметок высот (в том числе урезов воды) на всем блоке листов,

11.6. В редакционной записке (схеме), составляемой при стереотопографической и фототеодолитной съемке, особое внимание должно быть обращено на изображение форм рельефа территории (в частности скрытой под пологом растительности) и характер распространения микроформ и их приуроченность. Должны быть также даны указания по применению дополнительных и вспомогательных горизонталей, набору отметок высот и определению на стереоприборах различных характеристик.

К данной записке прилагаются образцы рисовки рельефа, схема увязанных отметок урезов воды (причем наряду с отметками, приведенными в условиях меженного периода, должны быть даны и отметки на даты залетов), схема основной дорожной сети, а если предполагается камеральное дешифрирование на универсальных приборах, - то образцы дешифрирования и описание дешифровочных признаков.

III. КОМБИНИРОВАННАЯ СЪЕМКА

12. МЕТОДИКА РАБОТ

12.1. Комбинированная съемка применяется преимущественно в плоскоравнинных залесенных районах при создании карт в масштабе 1:10 000 с сечением рельефа через 1 м. Технология полевых работ при комбинированной съемке представлена на схеме (рис. 2 в прил. 1 ).

12.2. Аэрофотосъемка для изготовления фотопланов производится аэрофотоаппаратами с фокусным расстоянием 140 или 100 мм в масштабе 1:40 000. Перекрытие аэроснимков задается равным 80´30% с целью покрытия каждой съемочной трапеции одним аэроснимком. В последнем случае оси аэрофотосъемочных маршрутов должны проектироваться по середине съемочных трапеций.

12.3. Плановое съемочное обоснование выполняется в соответствии с требованиями п. 5.5 настоящей Инструкции.

Работы по изготовлению фотопланов выполняются в соответствии с указаниями действующей Инструкции по фотограмметрическим работам при создании топографических карт и планов.

Светокопии с фотопланов для выполнения полевых работ должны быть изготовлены на полуматовой фотобумаге, наклеенной на лист алюминия.

12.4. Для обеспечения высотной опоры, необходимой для съемки рельефа, создаются высотные съемочные сети путем проложения основных и съемочных высотных ходов.

Основные высотные ходы прокладывают техническим нивелированием с опорой на пункты главной геодезической основы, отметки которых определены геометрическим нивелированием. Длина основного хода допускается не более 16 км, а расстояния между точками хода не должны превышать 400 м. Разрешается проложение ходов с одной или несколькими узловыми точками. В этом случае длина ходов между исходной и узловой точками сокращается на 25%, а между двумя узловыми точками - на 50%. При этом длина ходов между опорными пунктами может быть увеличена в полтора раза.

12.5. Нивелирование ведется из середины. Превышения точек хода определяются дважды по черной и красной сторонам реек, при этом расхождения в превышениях не должны; превышать 5 мм. Невязки в ходах допускаются не более 0,20 м и увязываются пропорционально длинам сторон. Системы ходов уравнивают совместно.

Между смежными трапециями определяют 2-3 точки связи. Расхождения высот точек связи, полученных из разных основных ходов, не должны превышать 0,25 м. Точки нивелирных и основных высотных ходов, проложенных по рамкам трапеций, одновременно служат точками связи. Точки связи должны быть отмечены в полевом журнале и на кальке высот.

12.6. Съемочные высотные ходы прокладываются между основными высотными ходами методом геометрического нивелирования с помощью нивелира или кипрегеля с уровнем на трубе.

Длина ходов не должна превышать 6,5 км. Невязки допускаются не более 25 см по высоте и 1 мм в плане (в масштабе карты). Невязки высот менее 10 см не увязываются.

Точки стояния инструмента располагают на хорошо опознаваемых контурных точках, а при их отсутствии определяют положение точек стояния на фотоплане обратными засечками или промерами от ближайших контурных точек.

12.7. Съемка рельефа производится на фотоплане с помощью мензулы. Необходимые для съемки пикеты выбирают в пределах до 300 м на характерных точках рельефа, совмещая по возможности с опознаваемыми на фотоплане контурами или определяя их полярным способом. Высоты пикетов определяют с точек съемочных и основных ходов горизонтальным лучом с помощью кипрегеля с уровнем на трубе. При необходимости превышения измеряют и наклонным лучом при одном положении вертикального угла (с учетом места нуля).

Дополнительно для съемки рельефа можно выбирать станции на опознаваемых по фотоплану контурных точках, передавая на них отметки не менее чем с двух ближайших точек высотных ходов; расстояния от станции до этих точек измеряют дальномером или по фотоплану.

Кроме пикетов, необходимых для изображения рельефа, определяют высотные отметки урезов воды в реках и водоемах и характерных точек ситуации и рельефа в соответствии с требованиями пп. 2.3 и 5.7 .

12.8. Горизонтали проводят, находясь на станции съемки. Если формы рельефа не выражаются основными горизонталями, то их изображают полугоризонталями, вспомогательными горизонталями или соответствующими условными знаками.

12.9. В процессе выполнения съемки составляют кальку высот, на которой наносят все пункты геодезической основы, точки основных и съемочных ходов, урезы воды, отметки характерных точек местности и все другие отметки, подписываемые на карте (см. прил. 8 ).

12.10. Дешифрирование при комбинированной съемке выполняют на фотопланах непосредственно на местности одновременно со съемкой рельефа, при этом производится до-съемка контуров и объектов местности, не изобразившихся на аэроснимках или возникших после проведения аэрофотосъемки. Дешифрирование осуществляют в процессе работы на точках стояния инструмента, а при необходимости - с дополнительным обследованием окружающей местности. Кроме фотоплана топограф должен иметь полный комплект аэроснимков для стереоскопического их рассматривания. Контуры и условные знаки наносят карандашом; при этом вместо заполнения контуров соответствующими обозначениями допускается применение сокращенных пояснительных надписей.

12.11. В целях обеспечения быстрого изготовления копий с полевых оригиналов рекомендуется съемку рельефа и контуров выполнять на матированном прозрачном недеформирующемся пластике, прочно закрепленном на фотоплане.

Вычерчивание результатов съемки следует выполнять с соблюдением требований действующих условных знаков (но возможности - с применением деколей). Вычерчивание производят, как правило, в день полевого обследования, оставляя края в карандаше до выполнения сводок по рамкам (кроме свободных).

12.12. При съемке определяют необходимые характеристики топографических объектов и выявляют географические названия, собирают сведения о местности, предусмотренные установленной программой.

12.13. Контроль точности съемки на каждой трапеции выполняется проложением контрольных ходов и набором контрольных пикетов инспектирующими лицами.

Средние расхождения высот контрольных точек с их высотами, определенными по плану, не должны превышать 1/3 принятого сечения рельефа.

12.14. Сводки полевых оригиналов могут производиться по выкопировке на восковке полосы карты шириной 3 см вдоль рамки трапеции (прил. 9 ) или с помощью циркуля-измерителя.

При сводке нужно добиться совпадений по рамке линий контуров и горизонталей, проверить на смежных листах согласованность заполнения контуров, отметок высот и урезов воды, характеристик рек, дорог, пояснительных надписей и названий. Не допускаются резкие изгибы контуров и горизонталей по линии рамки, кроме случаев, когда это обусловлено особенностями местности.

При наличии расхождений их устраняют путем перемещения; на половину величины на каждом из смежных листов, если эти расхождения не превышают:

1,0 мм - для основных контуров (границы, железные, шоссейные и улучшенные грунтовые дороги, улицы населенных пунктов, береговые линии больших рек и каналов);

2,0 мм - для прочих контуров;

полуторной величины допусков в положении горизонталей, указанных в п. 2.3 . настоящей Инструкции.

При обнаружении недопустимых расхождений начальник партии обязан произвести проверку съемки и установить правильное положение контуров и горизонталей.

12.15. При выполнении сводок с изданными картами того же или более крупного масштаба все исправления осуществляются на оригинале новой съемки, если расхождения в положении контуров и горизонталей не превышают установленных допусков. Если же расхождения больше этих допусков, то исправления не производятся, о чем сообщается руководству предприятия.

В случае, когда полную сводку осуществить невозможно из-за устарелости смежной карты, разрешается оставлять частичную несводку. В формуляре карты нужно указать, что именно осталось несведенным, а на полях оригинала сделать соответствующую запись.

12.16. По окончании сводки на полях оригинала карты должна быть сделана надпись, указывающая, с чем произведена сводка (с полевым оригиналом, тиражным оттиском, фотокопией с издательского оригинала и т.д.). Например: "Сведено с полевым оригиналом масштаба 1:10 000 съемки 1974 г. 18 мая 1978 г. Топограф М.Н. Сидоров".

Правильность выполнения сводок по рамкам внутри снимаемого объекта проверяется начальниками партий.

Свободные стороны и рамки, по которым сводки произведены частично, а также рамки, сведенные с изданными картами, должны быть проверены и подписаны главным инженером экспедиции (если съемка произведена комбинированным методом) или начальником цеха при стереотопографическом методе съемки.

12.17. Редакционные работы при комбинированной съемке выполняются согласно указаниям раздела 11 (пп. 11.1 - 11.5 ).

12.18. После окончания съемки сдаются оригинал карты, формуляр, полевые журналы, калька высот, выкопировки по сводкам и ведомость установленных названий.

Приложение 1

Рис. 1. Технологическая схема полевых работ при стереотопографической съемке

Рис. 2. Технологическая схема полевых работ при комбинированной съемке

Приложение 2

Основные характеристики аэрофотоаппаратов

Тип объектива

Фокусное расстояние(мм)

Угол поля зрения(градус)

Разрешающая способность (лин/мм)

Некомпенсированная радиальная дисторсия не более (мкм)

Диапазон выдержек, с

Руссар-Плазмат

* Размер кадра 30´30 см.

Примечание. Аэрофотоаппараты ТЭ и ТЭ-М выпускают с затворами, обеспечивающими диапазон выдержек от 1/40 до 1/120 с или от 1/80 до 1/240 с.

Приложение 3

Схемы съемочного обоснования

Рис. 3. Съемка в масштабе 1:10 000 с сечением рельефа через 1,0 м

Рис. 4. Съемка в масштабе 1:10 000 с сечением рельефа через 2,0 м

Рис. 5. Съемка в масштабе 1:10 000 с сечением рельефа через 5,0 м

Рис. 6. Съемка в масштабе 1:25 000 с сечением рельефа через 2,5 м

Рис. 7. Съемка в масштабе 1:25 000 с сечением рельефа через 5,0 м

Рис. 8. Съемка в масштабе 1:25 000 с сечением рельефа через 10,0 м

Рис. 9. Схема съемочного обоснования блока

Рис. 10. Схема съемочного обоснования каркасного маршрута

Приложение 4

Типовые схемы определения координат точек съемочного обоснования

Способ триангуляционных построений

Точки съемочного обоснования можно определять из различных триангуляционных построений, простейшее из них - треугольник, две вершины которого совмещаются с пунктами триангуляции (рис. 11 ). В треугольнике измеряют все углы.

Определяемая точка может располагаться в вершине одного из углов четырехугольника, вершинами двух других углов являются пункты триангуляции, а вершиной четвертого угла - вспомогательная точка (рис. 12 ). Углы при определяемой точке (или при вспомогательной точке) могут быть получены как дополнение до 180° суммы измеренных углов треугольника.

Определяемая точка может составлять одну из точек центральной системы (рис. 13 ). В одном из треугольников центральной системы две его вершины должны являться пунктами триангуляции. Все углы треугольника должны быть измерены.

Точки определяются путем вставки системы треугольников в угол (рис. 14 ). Углы при среднем пункте (в общей вершине системы) могут быть получены как дополнение суммы двух измеренных углов до 180°.

Определяемая точка может входить в цепочку треугольников между двумя сторонами триангуляции (рис. 15 ) или между стороной и пунктом триангуляции (рис. 16 ). Все углы в треугольниках должны быть измерены.

Способ угловых засечек

Определение координат точек съемочного обоснования прямыми засечками производится не менее чем с трех пунктов триангуляции или вспомогательных точек, определенных из триангуляционных построений (рис. 17 ).

Определение координат точек обратной засечкой выполняется не менее чем по четырем пунктам триангуляции или точек триангуляционных построений (рис. 18 ).

Комбинированная засечка выполняется по схеме, представленной на рис. 19 .

Допускается сочетание обратной засечки по трем геодезическим пунктам с измерением истинного азимута (рис. 20 ).

Полярный способ

Полярный способ определения координат точек съемочного обоснования заключается в измерении направления и расстояния до точки обоснования с пункта триангуляции или вспомогательной точки. Направление определяется путем измерения не менее двух примычных углов на смежные пункты. Расстояние измеряется дальномером или лентой, а также определяется из построения треугольника с измерением стороны (базиса). Измерения углов и направлений ведутся двумя круговыми приемами, линии измеряются дважды.

Определение координат точек полярным способом можно выполнять по схемам, указанным на рис. 21 -27 .

Расстояние до точки измеряется непосредственно, при этом надо обеспечить контрольное определение из треугольника, измерив другую его сторону и два угла (см. рис. 21 ).

Если по условиям местности построить треугольник нельзя, то с определяемой точки надо измерить направления на ближайший и еще на два видимых пункта (см. рис. 22 ).

Расстояние до точки определяется из треугольника, в котором измерены две стороны и два угла (см. рис. 23 ).

Расстояние до точки определяется из двух смежных треугольников, как недоступное расстояние (см. рис. 24 , 25 , 26 ).

Если на пункте триангуляции нельзя вести наблюдения, то определение точки можно выполнить по схеме снесения координат. При этом на определяемой точке (или на вспомогательной точке) должны быть измерены углы между направлениями на ближайший и два другие пункта триангуляции (см. рис. 27 ).

Сочетание способов определения координат

Разрешаются различные сочетания способов определения координат точек съемочного обоснования. На рис. 28 показано определение точек прямой засечкой с пунктов триангуляции и с вспомогательной точки.

На рис. 29 представлен пример определения группы точек обратной засечкой по трем пунктам триангуляции с контролем по вспомогательной точке. Координаты вспомогательной точки заранее не определяются; по сходимости координат вспомогательной точки можно судить о правильности измеренных направлений.

На рис. 30 изображена комбинация засечек разного вида. Сначала определяется вспомогательная точка комбинированной засечкой, затем обратной засечкой по трем пунктам триангуляции и вспомогательной точке определяется первая точка обоснования; вторая точка определяется прямой засечкой с пункта триангуляции, вспомогательной и первой точке обоснования.

Точка может быть определена обратной засечкой по трем пунктам триангуляции и по другой (или вспомогательной) точке, которая в свою очередь определена обратной засечкой также по трем пунктам триангуляции и по первой точке (рис. 31 ).

На рис. 32 представлена схема разомкнутого теодолитного хода между двумя пунктами; на рис. 33 - схема замкнутого полигона, опирающегося на один пункт и на рис. 34 - схема системы теодолитных ходов с одной узловой точкой.

Приложение 5

Закрепление на местности точек съемочного обоснования

Точки планового и планово-высотного съемочного обоснования закрепляют на местности долговременными знаками типа 1, 2, 3, 4, 5 (рис. 35 ).

Знак типа 1 представляет собой бетонный столб сечением 12´12 см и высотой 100 см или отрезок асбоцементной трубы той же длины и диаметра, заполненный цементным раствором, закладываемый в котлован или скважину на глубину 80 см. В верхнюю часть знака должен быть заделан металлический гвоздь со сферической шляпкой.

Знак типа 2 в виде трубы диаметром 40 мм с бетонным якорем предназначен для закладки котлованным способом на глубину 50 см.

Знак типа 3 предназначен для закладки бурением. В скважину диаметром 15 см и глубиной 80 см заливается до половины глубины скважины жидкий бетон, в который затем вставляется отрезок металлической трубы диаметром 40 мм и длиной 100 см. Пространство между трубой и стенками скважины заполняется утрамбованным грунтом.

Знак типа 4 предназначен для закладки в скальные грунты. Он представляет отрезок металлической трубы, основание которой цементируется в скальной породе.

Знак типа 5 предназначен для закладки бурением в многолетнемерзлые грунты и представляет собой металлическую трубу диаметром 40 мм с металлическим якорем диаметром 15 см.

Наружное оформление знаков долговременного закрепления на местности состоит из кольцевой канавы диаметром 1 м (по осевой линии) и поперечным сечением: по нижнему основанию 10 см, по верхнему 30 см, по высоте 20 см (для знаков типа 1, 2, 3).

Типы знаков для долговременного закрепления на местности точек съемочного обоснования

Над центром делается курган высотой 20 см. В районах болот и вечной мерзлоты окопка заменяется срубом размером 1´1 м, состоящим из двух венцов. На боковых стенках выступающей части бетонного столба или трубы надписываются масляной краской начальные буквы организации, выполняющей работы, и номер точки, например ГУГК, Вр.р.15.

Для закрепления долговременных знаков целесообразно также использовать выступы крупных камней, бетонные фундаменты опор линий электропередач и т.п. Долговременная точка в этом случае фиксируется путем заделки на цементном растворе небольшого металлического стержня, болта или костыля. Около последних делается масляной краской надпись, состоящая из начальных букв названия организаций, выполняющей работу, и номера точки.

На пахотных землях и зыбких болотах закладку знаков производить запрещается.

Приложение 6

Основные схемы работ при фототеодолитной съемке

Рис. 36. Схемы расположения базисов фотографирования:
а) на узком гребне; б) на широком гребне; в) на разветвленной вершине; г) на округлой вершине

Рис. 37. Схемы определения длины базиса фотографирования:
а) с помощью вспомогательного базиса; б) из неполного треугольника

Рис. 38. Схема измерения контрольных направлений

Приложение 7

Палетка для определения рабочей зоны самолетного радиодальномера РДС

Рабочая зона самолетного радиодальномера РДС определяется участком между окружностями, ограничивающими предельные дальности D max и D min и углы j max и j min , засечки самолета с базиса В R радиогеодезических измерении, приведенными в табл. 5 .

Для построения палетки откладывают на прозрачном пластике, или восковке величину базиса B R в масштабе карты (1:1 000 000), по которой производится проектирование работ. Из концов D и К базиса проводят окружности радиусами D min и D max (рис. 39 ).

Рис. 39. Палетка рабочей зоны самолетного радиодальномера

Кривые, определяющие положения вершин предельных углов засечек j max и j min , строят путем проведения окружностей из центров "C " и "d" через концы базиса "К" и "D". Положение центров "С" и "d" находят в пересечениях перпендикуляра "ab " к середине базиса с линиями К с и K d , проведенными из точки К под углом j min к линии "ab ".

При проектировании работ по картам более крупного масштаба, когда размеры палетки получаются достаточно большими, для построения кривой строят угол j min (или j max) на листе восковки. Укладывают восковку на палетку так, чтобы стороны угла прошли через концы базиса, и накладывают точку вершины. Повторяя такую укладку в разных местах, накалывают ряд точек, а соединяя их получают искомую кривую.

На рис. 39 приведена палетка (уменьшена вдвое) для проектирования радиогеодезических работ при топографической съемке в масштабе 1:10 000. Рабочая зона с одной стороны заштрихована.


Инструкции съемке в масштабах 1:5000, 1:2000, 1:1000 и 1:500" ...

Гидрографическая сеть;

Дорожная сеть и дорожные сооружения;

Населенные пункты и отдельные постройки вне населенных пунктов;

Линии электропередач и связи;

Растительный покров и грунты, а также элементы рельефа не выражающиеся в масштабе снимка горизонталями (овраги, промоины, курганы и т. п.).

Гидрографическая сеть

Элементы гидрографической сети на открытой местности достоверно дешифрируются по прямым признакам: темному тону изображения и извилистой форме русла. Реки несущие большое количество взвешенных наносов, а также быстро текущие (со вспененной водой) имеют на аэроснимке светлый тон изображения. Светлые участки изображения соответствуют также перекатам, а темные – плесам. Урез воды четко устанавливается по контрасту тонов изображения воды и суши. Общее направление течения определяется по ряду косвенных признаков: впадению притоков, конфигурации островов, расположению заводей, порогам, водопадам и т.п.

Канавы отличаются от естественных водотоков своей геометрически правильной конфигурацией и четкостью углов поворотов.

Озера, водохранилища и пруды , достоверно дешифруются на аэроснимках. Они изображаются на снимках в виде черных пятен округлой и овальной формы и имеют четкие границы.

Дорожная сеть и дорожные сооружения

Дороги дешифрируются на снимке в последовательности от высшего класса к низшему. Изображение дорог должно быть согласованно с изображением гидрографической сети, населенных пунктов и рельефа местности. Дороги должны изображаться таким образом, чтобы ось условного знака точно соответствовала ее действительному положению.

Дорожная сеть и большинство связанных с ней объектов уверенно дешифруются на аэрофотоснимках. На аэроснимках все дороги изображаются в виде светлых линий и полос различной конфигурации и ширины.

Шоссе - автодорога с твердым основанием и покрытием из цементобетона, асфальтобетона, щебня или гравия. Ширина полотна не менее 6 м. Тон изображения шоссе зависит от покрытия проезжей части (бетон, асфальт или гравий).

Улучшенные грунтовые дороги – профилированные дороги, не имеющие прочного основания и покрытия; грунт проезжей части может быть улучшен добавками гравия, щебня, песка или других материалов. Улучшенные грунтовые дороги допускают движение автотранспорта среднего тоннажа в течение большей части года. На аэроснимках выделяются следующими дешифровочными признаками: светлым тоном изображения, извилистыми очертаниями и небольшой постоянной шириной изображения полотна.

Грунтовые (проселочные) дороги , в отличие от шоссейных и улучшенных грунтовых дорог не имеют специального покрытия, гораздо более извилисты, имеют более крутые повороты, различные объезды и раздвоения, во многих местах пересекают без насыпей овраги и балки, и без мостов – неглубокие ручьи и реки. Они обычно соединяют населенные пункты, их проходимость зависит от характера грунта и степени его увлажнения. На снимках характеризуются светлым тоном изображения (в сырых местах - темным).


Полевые и лесные дороги – это периодически используемые грунтовые дороги. Они изображаются в виде светлых тонких извилистых линий, обычно заканчиваются в полях и лесах. В лесах они теряются, а на открытой местности хорошо различимы.

Населенные пункты и отдельные постройки вне населенных пунктов

Населенные пункты резко выделяются на аэроснимках, благодаря своеобразным очертаниям. Их основным дешифровочным признаком является рисунок фотоизображения, который передает структуру населенного пункта. Рисунок образуется сочетанием построек и улиц. Постройки изображаются на аэроснимках в виде черно-белых прямоугольников, а улицы – в виде светло-серых полос. Населенные пункты сельского типа состоят из застроенных частей и примыкающих к ним огородам.

Дешифрирование населенных пунктов на снимках рекомендуется выполнять в следующей последовательности:

Выделить сооружения, являющиеся ориентирами (сооружения башенного типа), а также объекты, важные в социально-культурном и экономическом отношении;

Показать главные и прочие улицы и проезды, отображающие характер застройки;

Показать элементы гидрографической сети (реки, ручьи, озера, пруды и т.п.);

Показать строения, расположенные на перекрестках улиц;

Отработать внутреннюю структуру кварталов (показать строения и сооружения в них);

Отработать внешний контур (окраину) населенного пункта;

Показать растительный покров внутри населенного пункта и на его окраинах.

Растительный покров и грунты. Элементы рельефа не выражающиеся в масштабе снимка горизонталями

При дешифрировании снимков различают следующие виды растительности и грунтов:

Древесную (леса, отдельные рощи и отдельные деревья);

Кустарниковую;

Травянистую;

Камышовые и тростниковые заросли;

Древесная растительность подразделяется:

По группам пород: на лиственные, хвойные и смешанные леса ;

По высоте и сомкнутости крон (характеризуемой отношением площади проекций крон деревьев ко всей площади участка леса): на леса , при высоте деревьев более 4 м и сомкнутости крон свыше 0,2 и поросль леса , лесные питомники и молодые посадки при высоте менее 4 м.

Леса разного состава имеют на снимке зернистую структуру изображения, падающие тени и четкие границы.

Лиственные породы на аэроснимках отличаются от хвойных светло-серым тоном изображения, овальной формой проекции крон, групповым расположением крон и разновысотным строением полога

Для елового леса характерны темно-серый тон изображения, зернистая структура изображения, резкая разновысотность полога, наличие падающей тени и конусообразной форма проекции крон.

Отличительными признаками зарослей кустарников является мелкозернистая, иногда смазанная структура рисунка изображения, серый или темно-серый тон, отсутствие или небольшая длина падающей тени, округлая или фестончатая форма контуров.

Болота – увлажненные участки местности со слоем вязкого грунта (торфа, ила) более 0,3 м. Болота изображаются с подразделением их по степени проходимости (проходимые и непроходимые или труднопроходимые) и характеру растительного покрова (травянистые, моховые и камышовые (тростниковые) и лесные). К проходимым относятся болота, по которым в течение меженного периода возможно свободное передвижение в любом направлении. Все остальные болота показываются общим знаком проходимых и труднопроходимых болот.

Основным прямым признаком дешифрования болот является структура их фотоизображения, образованная чередованием светлых и темных участков, точек и линий.

Облесенные и лесные болота распознаются по светлому размытому тону изображения и мелкозернистому рисунку, мозаичный рисунок присущ травяным болотам, а полосатый – моховым. Полосатость рисунка создается за счет чередования четких светлых полос – гряд, и размытых темных полос – топей.

Отличительными дешифровочными признаками лесного болота является темно- и светло-серый тон изображения, мелкозернистый рисунок, угнетенная, сильно изреженная древесная растительность, которая придает изображению более светлый общий тон.

Травяное болото характеризуется темно-серым (без мелкой зернистости) тоном изображения, и мозаичным рисунком, за счет сильно обводненных участков, образующих темные пятна.

Заболоченные участки местности характеризуются меньшей степенью увлажненности, чем проходимые болота, и определяются, главным образом, по специфической растительности (осока) и малой толщиной (менее 0,3 м) или отсутствию торфяного слоя.

На аэроснимках опознаются некоторые формы рельефа , не выражающихся в масштабе съемки горизонталями: овраги, промоины, обрывы, осыпи.

Овраги на аэроснимках достоверно дешифруются, по характерному для них ветвистому рисунку изображения, четким граням, благодаря резкому контрасту между затененными и

освещенными склонами. Промоины , в отличие от оврагов, изображаются в виде тонких, чаще всего, темных полос и линий по склонам. Обрывы легко опознаются по своей высоте (1,5 – 2 м и более), резким очертаниям, крутым скатам, различию в фототонах с окружающими задернованными склонами. Осыпи отличаются от обрывов наличием шельфа.

11 ГЛАВА. ДЕШИФРИРОВАНИЕ МАТЕРИАЛОВ СЪЕМОК

Виды обработки материалов

2 вида обработки полученных материалов:

1. Предварительная (межотраслевая) – коррекция снимков: устранение искажений и помех (по техническим и природным причинам) – приведение снимков к виду, пригодному для анализа и интерпретации (расшифровке).

2. Тематическая (отраслевая). В нашем случае – экологическая.

Моделирование и прогнозирование – это дальнейший этап работы с материалом, который необходим для прогнозирования развития явления или процесса (например, талого стока рек, будущего урожая, осадков, движения ураганов, торнадо, извержения вулканов, экологических катастроф и т.д.). Для этого определяют количественные характеристики явления.

Дешифрирование это процесс распознавания: объектов, их свойств, взаимосвязей по их изображениям на снимке. Это и метод изучения и исследования объектов, явлений и процессов на земной поверхности, который заключается в распознавании объектов по их признакам, определении характеристик, установлении взаимосвязей с другими объектами.

Дешифровочные свойства это свойство объектов, нашедшие отражение на снимке и используемые для распознавания.

Дешифрировать снимок - это значит обнаружить, распознать, классифицировать и интерпретировать выявленный объект или явление.

Дешифрирование снимков как дисциплина является составной частью аэрокосмических методов, которые кроме дешифрирования включают:

Способы получения аэрокосмических снимков,

Фотограмметрию и стереофотограмметрию, изучающие методы геометрических измерений по снимкам,

Фотометрию,

Структурометрию.

Предмет которых - изучение яркостных различий изображений объектов на снимке.

Снимки дают полное изображение физиономичных (отчетливо различаемых) на них элементов ландшафта, соответствующих определенному иерархическому уровню:

Глобальному - на мелкомасштабных космических,

Детальному - на крупномасштабных аэроснимках.

Общим для названных дисциплин является понятие о снимке.

Дешифрирование - важный этап процесса картографирования . При создании крупномасштабных топографических карт доля дешифрирования составляет более 25% всего объема работ. При картографировании с использованием космической информации она существенно больше, иногда процесс дешифрирования является даже преобладающим.

Фотограмметрическая обработка (специальными приборами) дает ответ на то, где находится объект, его геометрические характеристики (размер и форма). Она позволяет определять по снимкам плановое и пространственное положение объектов и их изменение во времени.

Особенности дешифрирования :

На снимках находят отражение не все, а только определенные свойства объектов (некоторые свойства оказываются утерянными, другие - частично искаженными);

Объект представлен на снимке в обобщенном виде (отсутствуют многие детали);

На снимке запечатлен только определенный момент состояния объекта, в то время как мы воспринимаем окружающий мир в развитии;

Изображение на снимке одного и того же объекта изменчиво в зависимости от многих факторов;

На снимке изображаются объекты, не видимые с земли из- за слишком большого размера;

Изображение на снимках не соответствует привычному для нас виду, так как необычен ракурс наблюдения (сверху).

3 метода получения информации по космиснимкам:

1. Дешифрирование ,

2. Фотограмметрическая обработка,

3. Компьютерные технологии.

Выбор метода дешифрирования зависит от следующих факторов:

Поставленной задачи,

Характера объекта,

Географических условий,

Масштаба и точности карты,

Сроков выполнения работ,

Обеспеченности материалами и инструментами,

Обеспеченности кадрами соответствующей квалификации.

Технология дешифрирования. Под технологией дешифрирования понимается совокупность средств и приемов извлечения информации со снимков (Рис. «Технологическая схема процесса дешифрирования»).

Предварительный этап дешифрирования включает подготовку съемочных материалов (данные из фонда аэрокосмических материалов) и сбор дополнительных материалов, это:

– литературные источники (научная литература, методические пособия, справочники) – сведения о географических особенностях территории, о существе и специфики объектов,

– карты – государственные топографические, тематические, ведомственные источники.

– ведомственные материалы – планы лесоустройства (лесное ведомство), планы и карты землепользований, почвенные карты (сельскохозяйственные ведомства), навигационные карты (Гидрографическая служба).

Наиболее рациональной технологией является такая, при которой удается извлечь со снимка максимум информации при минимальной затрате средств и труда.

Особое внимание отводится к сбору дополнительных материалов. Проводят районирование территории.

Порядок дешифрирования зависит от:

Поставленной задачи,

Характера местности,

Масштаба (детальности) снимка.

Качество результатов дешифрирования зависит от применяемых методик и технологических процессов.

Космические снимки отличаются от аэрофотоснимков генерализацией изображения.

Дешифрирование всегда носит целенаправленный характер, поэтому говорят о:

топографическом,

ландшафтном,

геоморфологическом,

сельскохозяйственном и других видах дешифрирования.

Три степени дешифрируемости материалов:

1. хорошую,

2. среднюю,

3. слабую (плохую).

Хорошая дешифрируемость . Уже на стадии предварительного дешифрирования можно получить довольно полное представление о геологическом строении местности:

Можно выделить все элементы геологического строения (границы стратиграфических подразделений осадочных, эффузивных пород, интрузивных образований и новейших континентальных отложений, элементы складчатой структуры и разрывные нарушения),

Устанавливаются элементы залегания и мощность пород.

Рис. Технологическая схема процесса дешифрирования.

Средняя дешифрируемость. При средней дешифрируемости можно составить только общее представление о геологическом строении района:

Выделяются только главные элементы геологического строения и тектоники,

Устанавливаются границы литологически различных пород, на отдельных участках выделяется слоистость в осадочных и эффузивных толщах, контуры интрузивных тел выявляются по косвенным признакам, новейшие континентальные образования и разрывы дешифрируются достаточно четко.

Элементы залегания и мощность пород удается определить лишь в отдельных пунктах.

Слабая дешифрируемость. Прислабой дешифрируемости обнаруживаются лишь отдельные черты геологического строения:

Выявляются лишь некоторые элементы геологического строения и тектоники,

В осадочных и вулканогенных толщах намечается преобладающее простирание слоев, границы интрузивных тел проводятся условно, новейшие континентальные образования оконтуриваются без расчленения, элементы складок и положение разрывов устанавливаются по косвенным признакам.

Основной методологический принцип , применяемый в процессе дешифрирования, - рассмотрение объектов в их развитии и взаимосвязи.

Дешифрирование дает ответ на то, что изображено на снимке – «чтение» и интерпретация снимков по дешифровочным признакам.

В зависимости от геолого-тектонического строения районов применяют различные методы дешифрирования снимков:

Контрастно-аналоговый,

Ландшафтно-индикационный.

Применение прямого метода – только в геологически открытых районах, где коренные горные породы выведены на поверхность. Фототоновые различия, а также особенности структуры и рисунки изображения на снимках этих районов обусловлены геологическими телами, их окраской, вещественным составом, залеганием. Поэтому здесь возможно непосредственное отождествление выделенных на снимках объектов с геологическими телами и прямое сопоставление геолого-геофизических материалов с данными дешифрирования. Прямой метод дешифрирован позволяет устанавливать поля развития горных пород различного состава и генезиса, границы стратиграфических подразделений осадочных и вулканогенных пород, характер их залегания, тектонические нарушения.

Контрастно-аналоговый (контурно-геологический) метод используют при работе с аэрофотоматериалами и космическими снимками всех уровней генерализации как в геологически открытых, так и в гелогически закрытых районах. Контрастно-аналоговый метод основан на связях внешних компонентов ландшафта с геологическим строением и сравнении дешифрируемых объектов с “фотопортретами” эталонных структур геологически однотипных площадей. Геологические объекты, аналогичные по строению и истории развития, имеют сходные изображения на снимках. На снимках ключевых участков проводится дешифрирование неоднородностей фототона и рисунков фотоизображения.

Затем наземными волевыми исследованиями устанавливается геологическая природа отдешифрированных объектов, т. е. проводится их интерпретация.

Использование контрастно-аналогового метода: на основании исследований:

Составляются таблицы дешифровочных признаков,

И подбираются снимки - эталоны с типичным фотоизображением изученных геологических объектов, их “фотопортреты”.

При дешифрировании новых геологических однотипных площадей задача сводится к отысканию объектов, сходных с “фотопортретом” эталонной геологической структуры.

Ландшафтно — икдикационный метод дешифрирования применяют в геологически закрытых районах при работе с аэрофотоснимками, а также космическими снимками среднего и высокого разрешения.

2 способа дешифрирования:

1. на местности (полевое дешифрирование ) – Достоинства: высокая степень достоверности, изучение местности на момент деш. (современность). Недостатки: невысокая производительность, высокая стоимость, метео-зависимость.

2. в лабораториях (камеральное дешифрирование) – Достоинства: малая затрата времени и труда. Недостатки: не обеспечивает полноты и достоверности результатов.

Но в обоих случаях присутствует зависимость от сроков, инструментов и кадров.

Полевое дешифрирование

Полевое дешифрирование состоит из:

Наземного дешифрирования,

Аэровизуального дешифрирования,

Подспутниковых наблюдений.

Полевое дешифрирование заключается в сопоставлении изображения на снимке (фотоплане, фотосхеме ) с местностью.

Наземное дешифрирование может быть:

Сплошным,

Выборочным,

Маршрутным (чаше при географических исследованиях) – включает описания, сбор образцов, измерения, фотографирование эталонных участков.

На открытой местности дешифровщик может наблюдать полосу шириной до 500 м,

В залесенной, с пересеченным рельефом — не более 300 м.

Наземное дешифрированиевключает все этапы подготовки. При этом:

Просмотр (по возможности стереоскопический – стереоочками, полевыми карманными стереоскопами – «Топопрет»)

И подготовка снимков (для равнинной территории – единого масштаба снимков; для горной местности – масштаб отдельно для долин и отдельно для склонов и хребтов).

После просмотра снимков составляется предварительный вариант легенды.

Достоинство наземного дешифрирования: возможно одновременно собирать дополнительные сведения и данные об объектах, а также выполнять и другие работы.

Аэровизуальное дешифрирование (дешифрирование с воздуха) выполняется с борта вертолета (скорость 2 км./мин.) или легкого самолета. Время работы специалиста – около 2 часов. Заранее необходимо:

Проработать маршрут полета (нанести его на карту или снимок). При высоких требованиях к детальности определить высоту (200-400 м., макс. до 800 м.) и скорость полета (не более 100 км.час.),

Подготовить и систематизировать съемочный материал.

Обработка данных при аэровизуальном дешифрировании: оформление, корректировка или расшифровка неясных мест в записях выполняется в тот же день.

Достоинство : большое число ориентиров и большой охват территорий. Возможность наземных наблюдений.

Подспутниковые наблюдения — это единовременное получение информации об объекте на земле, с воздуха и из космоса.

Виды работ могут быть комплексными, это:

Съемка с самолета разной аппаратурой,

Синхронно со съемкой из космоса,

Спектрометрирование с воздуха и на земле,

Описание состояния всех объектов земной поверхности на снимаемом участке, измерения, взятие проб.

Достоинство космических снимков : большое охват территорий. Большая достоверность.

Недостатки космических снимков : процесс сложен организационно, низкое разрешение, видно мало ориентиров.

Применяется для изучения и картографирования природных ресурсов.

Камеральное дешифрирование

Камеральное дешифрирование — это распознавание объектов на снимке в лабораторных условиях, путем сопоставления изображения с имеющимися эталонами и знаниями и опыту самого дешифровщика.

2 метода камерального дешифрирования (распознавания, извлечения информации):

1.Визуальное – выполняет дешифровщик по фотоматериалам и на экране монитора (самое распространенное).

2.Автоматизированное — выполняется приборами — на персональных компьютерах или на специальных приборах (требует качественных снимков).

Каждый из них имеет свои достоинства и недостатки.

Визуальное дешифрирование — это процесс, выполняемый исполнителем независимо от того, в каком виде представлен снимок (фотоотпечаток, изображение на экране монитора, изображение на специальных приборах.

Визуальное дешифрированиеиспользует 2 вида восприятия:

1. Зрительное восприятие,

2. Логическое восприятие.

Зрительное восприятие – у словно делится на восприятие:

А) Яркости,

В) Размера,

Г) Объема.

Восприятие яркости — это величина физиологическая. Она характеризует ощущение светачеловеком в противоположность яркости, реально существующему свойству окружающего мира.

Это восприятие основывается на способности воспринимать яркостные различия, которую принять характеризовать пороговыми значениями световой чувствительности зрения.

Разностный порог p ) — это разность яркости объекта (Во) и окружающего фона (В f): В p = В о — В f

Пороговый контраст (К) (или дифференциальный порог) — это отношение разностного порога к яркости фона:

Восприятие цвета. Цвет – это ощущение человека, возникающее при восприятии света с различными длинами волн. Глаз воспринимает диапазон волн от 0,39 до 0,70 мкм. Цветовой порог (или цветовая чувствительность) для разных участков спектра разный, например наиболее чувствителен глаз:

Днем — к желто-зеленому участку спектра,

При электрическом освещении – к оранжевому и красному.

Зависимость восприятия цвета от площади объекта:

На малых полях – цвет разрушается.

Для того чтобы определить цвет объекта, его площадь должна в 2-3 раза превышать размер, при котором он обнаруживается.

Цвет с трудом поддается измерениям. Применяют понятия: тон, насыщенность, светлота.

Восприятие размера. Способность глаза различать детали характеризуется «остротой зрения» — это минимальный угол, под котором видно 2 точки или 2 линии раздельно. Обычно это 20-45 сек.

Восприятие объема тереоскопическое восприятие). Стереоскопическим восприятием называется зрительное представление об объемности предметов и их пространственном расположении. Рассматривают объект (на 2 снимках) обоими глазами – возникает «стереоскопическая модель». Глазной базис человека (расстояние между глазами) — от 55 до 75 мм. (среднее 65 мм).

Приборы для визуального восприятия:

Увеличительные приборы – лупы (обзорные, штативные, Измерительные),

Стереоскопические приборы (получение объемного изображения) — Линзово-зеркальный стереоскоп ЛЗС-1 (поле зрения 12 см. и увеличение 1,4 крат); интерпретоскоп (для деш. снимков 30Х30 или 23Х23 см.). Имеет возможность разного увеличения (2-15 крат) и для каждого снимка,

Приборы для преобразования изображения,

Синтезирующие проекторы,

Комплексы синтезирующей аппаратуры .

При визуальном дешифрировании многозональных снимков применяют 3 приема:

1. Дешифрирование одного зонального снимка – проводится в случае, когда одна из съемочных зон в наибольшей степени удовлетворяет поставленной задаче. Обычно – снимок в ближней инфракрасной зоне (хорошо деш. спектр воды, растений – темный).

2. Дешифрирование серии зональных снимков,

3. Дешифрирование цветного синтезированного снимка.

Логическое восприятие это особенность восприятия человеком действительности. Глядя на пейзаж, человек видит не отдельные пятна разной яркости или цвета, не линии и точки, а образы – лес, поле, дорогу…Составляя логическую цепочку, мы группируем отдельные признаки объектов в рисунок и определяем их, используя похожие образы. У всех людей логическое мышление разное.

Начало работы: просмотр снимков (от общего к частному, от крупных объектов к мелким), по возможности стереоскопически . Затем: изучение мелких участков с увеличением (по возможности использовать топографические карты более крупного масштаба), установление, набор и систематизация объектов (фактов), распределение их по важности и полезности, установление новых логических связей (с использованием косвенных методов).

Основной принцип камерального дешифрирования — это эталонное дешифрирование, основанное на сравнении изображения на снимке с образом (эталоном), сформировавшимся ранее у дешифровщика при работе с другими снимками.

Эталонирование (калибровка) . Получить посредством дешифрирования (визуального или компьютерного) или фотограмметрической обработки необходимые характеристики изучаемого объекта только по снимкам без каких-либо натурных определений, без обращения к «земной правде» в большинстве случаев невозможно. Например, для спектрометрических определений по многозональному снимку, на которых основано компьютерное дешифрирование, требуется выполнить радиометрическую калибровку снимков (их эталонирование ), а для получения размера объекта по снимку фотограмметрическим способом необходима его геометрическая калибровка.

Различают абсолютную и относительную калибровку. Процедура получения и учета калибровочной информации составляет необходимый элемент технологической схемы аэрокосмических исследований. Эта информация обязательна для любой обработки снимков, хотя объем ее бывает различным — чем выше требуемая точность определений по снимкам, тем он значительнее.

При обработке одиночных снимков ограничиваются относительной калибровкой , а нескольких, например многозональных, желательна их абсолютная калибровка .

Современные компьютерные технологии позволяют решать следующие группы задач:

Визуализация цифровых снимков;

Геометрические и яркостные преобразования снимков, включая их коррекцию;

Конструирование новых производных изображений по первичным снимкам;

Определение количественных характеристик объектов;

Компьютерное дешифрирование снимков (классификация).

Наиболее сложной является задача компьютерного (автоматизированного) дешифрирования, которая составляет фундаментальную проблему аэрокосмического зондирования как научной дисциплины и для решения которой прилагалось и прилагается много усилий.

Эталонами могут быть: специально подготовленные аэроснимки, карты территорий (тематические или более крупного масштаба), результаты целенаправленно выполненных полевых работ.

В результате находятся сходные признаки и объекту присваивается класс.

По такому же принципу работает автоматизированное дешифрирование; эталоны при этом называют «обучающей выборкой ».

Особенности камерального дешифрирования: зависимость от дополнительных материалов (поэтому необходим сбор дополнительных материалов, в том числе — знать дату старых съемок).

Основной принцип – эталонное дешифрирования. В качестве эталонов могут быть: специально подготовленные снимки, тематические карты части территорий (более крупного масштаба), результаты целенаправленно выполненных полевых работ (наблюдения), крупномасштабные карты.

Возможности визуального дешифрирования:

  • Анализ изображения выполняется на уровне объектов, размеры которых в несколько раз больше разрешения (пиксела).
  • Количественные оценки (площади, длины и т.д.) могут быть получены лишь приближенно.
  • Анализ яркости (тон изображения) на черно-белых изображениях возможен в пределах до 12 ступеней.
  • Совместный анализ зональных снимков ограничен, т.к. сопоставление более 2-х снимков затруднителен.
  • Форма объектов в плане определяется легко и однозначно.
  • Форма объектов в пространстве (их вертикальная протяженность) легко определяется на паре смежных снимков (по стереоприбору или по тени).
  • Пространственное размещение объекта определяется легко.
  • Хорошо используются косвенные признаки.
  • Возможно дешифрирование сразу по выверенной легенде.
  • Результаты деш. обычно субъективны.

Возможности автоматизированного дешифрирования:

  • Анализ изображения выполняется на уровне отдельных пикселов.
  • Количественные оценки (площадь, длина и т.д.) получаются с высокой точностью.
  • Детальный и точный анализ яркостных различий ограничен лишь свойствами цифрового снимка.
  • Возможен хороший анализ многозонального снимка.
  • Определить форму объекта в плане сложно (практически сейчас не решается).
  • Форма объекта в пространстве может быть определена по паре смежных снимков (стереоочками и спец. программами).
  • Пространственную информацию получить сложно.
  • Определяются лишь яркость и структура. Использовать косвенные признаки практически невозможно.
  • Используются лишь простые легенды (часто не совсем логичные).
  • Результаты цифровой обработки объективны, но зависят от параметров, заданных исполнителем.

Применение : при топографическом картографировании малообжитых труднодоступных районов.

Преимущество визуального метода (перед автоматизированным): экономичность, легкость и быстрота получения пространственной информации (формы, размеры объектов, особенности их распределения), одновременное использование всех дешифровочных признаков (и прямых, и косвенных), применение дешифровщиком логического мышления и интуиции (что пока не умеет машина).

Недостаток визуального метод: субъективизм (зависимость от дешифровщика), малая надежность, зависимость от компетентности дешифровщика, качества дополнительных и съемочных материалов, качества и достоверности эталонов .

Автоматизированное дешифрирование

Компьютерные технологии обработки снимков по специальным алгоритмам и программам (с обучением и без). Дают точность 70-85%.

Для фотограмметрических измерений снимков применяют специальные прецизионные оптико-механические приборы, а также компьютерные комплексы со специализированным программным обеспечением. Для обработки аэрокосмических снимков на персональных компьютерах можно использовать коммерческое программное обеспечение общего назначения. Географ должен уметь выбрать оптимальный вариант обработки из многих возможных, предоставляемых коммерческим программным обеспечением.

В компьютерной технологии используется эталонирование, так как для выполнения компьютерного дешифрирования необходимо получить калибровочную информацию, где учитывается описание:

  • Абсолютная или относительная;
  • Радиометрическая или геометрическая калибровка исследуемого объекта (размер, высота, цвет, излучение и т.д. объекта).

Задача компьютерного дешифрирования снимков сводится к классификации - последовательной <сортировке> всех пикселов цифрового снимка на несколько групп.

Для этого предложены алгоритмы классификации двух видов - с обучением и без обучения (кластеризации — от англ. «скопление, группа »).

При классификации с обучением пикселы многозонального снимка группируются на основе сравнения их яркостей в каждой спектральной зоне с эталонными значениями.

При кластеризации же все пикселы разделяют на группы-кластеры по какому-либо формальному признаку, не прибегая к обучающим данным. Затем кластеры, полученные в результате автоматической группировки пикселов, дешифровщик относит к тем или иным объектам.

Достоверность компьютерного дешифрирования формально характеризуется отношением числа правильно классифицируемых пикселов к их общему числу и составляет в среднем 70- 85 %, заметно падая с увеличением набора дешифрируемых объектов.

Преимущество метода :

Возможность преобразования яркостей цифровых снимков для улечшения их восприятия;

Применение математических операций;

Возможность наложения изображений снимков (при многозональной съемке);

Сопоставление разновременных снимков одного и того же объекта (с целью изучения его изменений во времени).

Недостаток метода :

Результаты не всегда объективны (достоверность всего 60-80%);

Метод не совсем самостоятельный (часто помогает и дополняет исполнитель).

Визуальный и автоматизированный методы имеют свои достоинства и недостатки.

Дешифровочные признаки объекта.

Дешифровочные признаки — свойства объектов, нашедшие отражение на снимке и используемые для распознавания.

Выделяют 2 группы дешифровочных признаков:

Прямые (общие, основные),

Косвенные (специальные)

Прямые дешифровочные признаки — с войства объекта, находящие непосредственное отображение на снимках, присущие самим объектам.

Свойства прямых признаков (по данным разных авторов):

  • геометрические — форма, конфигурация, размер, объем, рисунок объектов или структурные (линейные и объемные),

общие (фотограмметрические ) — фототон, цвет.

Иногда добавляют — взаимное расположение .

По другим данным к прямым дешифровочным признакам относить три группы признаков:

1. геометрические (форма, тень, размер);

2. яркостные (фототон, уровень яркости, цвет, спектральный образ);

3. структурные (текстура, структура, рисунок).

Геометрические признаки (форма, тень, размер).

Форма - это наиболее надежный, т.е. не зависящий от условий съемки, признак. Наш глаз наиболее уверенно распознает именно форму объектов. С изменением масштаба снимков форма объекта на снимке может несколько изменяться, за счет исчезновения деталей она упрощается. На аэроснимках, полученных короткофокусной камерой, форма плоских объектов искажается на краях снимка. То же происходит, если объекты располагаются на наклонной поверхности. На космических снимках форма объектов, не имеющих вертикального протяжения, передается практически без искажений.

Форма в плане — плане часто используется при распознавании объектов,

связанных с деятельностью человека, так как они (как правило) имеют форму, близкую к правильной геометрической.

Тень — дешифровочный признак, позволяющий судить о пространственной форме объектов на одиночном снимке.Виды теней: собственная, падающая . Собственная тень п озволяет судить о поверхности объектов, имеющих объемную форму: резкая граница тени угловатых объектов характерна для крыш домов, а размытая – свидетельствует о плавной поверхности, например, крон деревьев. Падающая тень и грает огромную роль. Определяет вертикальную протяженность и силуэт объекта. Позволяет сравнить объекты по высоте.

Размер объекта - не вполне надежный признак. При дешифрировании чаще используются не абсолютные, а относительные размеры объектов.

Яркостные признаки (уровень яркости, фототон, цвет, спектральный образ ). На возможность геологического дешифрирования существенно влияют спектральные характеристики (степень контраста геологических тел, отличающихся по спектральной яркости). При многозональной съемке в разных спектральных интервалах геологические тела, снятые при различных погодных условиях, отображаются на космических снимках с разной степенью контрастности.

Освещенность земной поверхности , т.е. количество световой энергии, приходящейся на единицу площади, преимущественно складывается из прямой и рассеянно й солнечной радиации, соотношение между которыми меняется в зависимости от:

Высоты Солнца,

Крутизны

И ориентировки склонов.

При высоком Солнце преобладает прямая радиация, что приводит к резким различиям в освещенности склонов разной экспозиции: одни склоны оказываются освещенными, другие - в тени или полутени. В ясный, безоблачный день в околополуденные часы освещенность склонов может различаться в четыре-шесть раз. Тени в это время занимают наименьшую площадь, но зато плотность их очень велика, поэтому объекты в тенях распознаются очень неуверенно или не распознаются вовсе.

При низком Солнце возрастает доля рассеянной радиации, тени становятся более прозрачными, хотя и значительно большими по площади. Разница в освещенности склонов разной экспозиции уменьшается.

Уровень яркости (спектральная отражательная способность). Яркостные дешифровочные признаки связаны с одним и тем же свойством объектов местности - спектральной отражательной способностью:

Фототон (или тон фотоизображения),

Уровень яркости (или кодированная яркость),

Спектральный образ.

Спектральная яркость на цветных и многозональных снимках:

На цветных — спектральная яркость объектов отображается цветом ,

На многозональных – спектральная яркость объектов отображается «спектральным образом » (набором тонов или уровней яркости в зонах). На шкале тонов оптическая плотность каждой ступени измеряется (на денситометре) и получается условное название фототона.

Фототон – это оптическая плотность изображения на черно-белых фотоотпечатках при визуальном анализе. Этот признак является функцией интегральной или зональной (в относительно узкой зоне спектра) яркости объектов. Та же интегральная или зональная яркость на цифровых снимках закодирована уровнями яркости шкалы обычно из 256 числа ступеней.

Табл. Шкала тонов для визуального дешифрирования

Фототон Принцип выделения Значение оптической плотности
Белый Крайний визуально различимый 0.1 и менее
Почти белый Плотность вуали 0.2-0.3
Светло-серый Минимальная плотность большинства фотоизображений 0.4-0.6
Серый Средняя плотность большинства фотоизображений 0.7-1.1
Темно-серый Максимальная плотность большинства фотоизображений 1.2-1.6
Почти черный Тон, превышающий максимальную плотность большинства фотоизображений 1.7-2.1.
Черный Крайний визуально различимый тон шкалы 2.2. и более

Использование данного метода :

При компьютерном является основным,

При визуальном дешифрировании реже (чаще при черно-белой съемке по одиночным снимкам с использованием шкалы тонов ).

Недостатки спектрального метода:

Изменчивость спектральной яркости объекта (зависимость от высоты Солнца и прозрачности атмосферы),

Зависимость от фазы вегетативного развития,

Неоднозначность изобразительных свойств съемочных систем,

Зависимость от условий фотохимической обработки,

Фототон, уровень яркости, цвет и спектральный образ одного и того же объекта на разных снимках могут сильно изменяться.

Структурные (рисунок, текстура, структура).

Текстура — сочетание элементов изображения – различия в фототоне.

Структура — крупные элементы, у которых распознаются форма и размер,

Рисунок — несколько различных структур, формирующих устойчивые сочетания, типичные для определенных объектов земной поверхности. Рисунок изображения — это сложный, но самый надежный признак. Он представляет сочетание объектов и их частей определенной формы, размера и тона (цвета).

Косвенные признаки (специальные ) признаки по индикаторам:

Геоморфологические (форма рельефа, строение гидросети),

Геоботанические ,

Антропогенные и зоогенные,

Почва ,

природные территориальные комплексы,

Проявляющиеся в генетических взаимодействиях с другими объектами,

иногда Фотогенные (фототон, фотограммометрические, характерный рисунок).

Косвенные признаки делят на три группы индикаторов:

1. Объектов – объекты, не изобразившиеся на снимке (например, отсутствие на снимке дороги на пересечении с рекой предполагает наличие моста или брода),

2. Свойств объектов (чаще скрытые) – например, индикатором горно-обогатительных предприятий оказываются отстойники (водоемы, имеющие в плане конфигурацию близкую к правильной,

3. Движения или изменений – объекты-индикаторы динамики, которые позволяют выявить наличие движения или временных изменений по материалам одной съемки (например, мутьевые потоки, выносимые реками в прибрежную зону озер или морей, говорят о течении в приповерхностном слое воды. Ориентировка песчаных дюн позволяет определить направление преобладающих ветров

Под обнаружением понимается установление объекта без определения его сущности. Выявление объекта с определением качественных и количественных характеристик его сущности является распознаванием.

Генерализация изображения — это степень обобщения спектральных и геометрических характеристик ландшафта фотографируемой территории.

Мелкие элементы ландшафта и геологического строения объединены на космическом снимке в более крупные, т. е. генерализованы . В результате этого в формировании изображения на космических снимках выявляется ведущая роль геологических и прежде всего тектонического факторов.

Классифицировать объект - это отнести его к определенному классу и присвоить ему условный знак, а интерпретировать - определить состав объекта и динамику его развития.

Эти понятия, введенные для топографического дешифрирования снимков А.В.Аковецким, в общем верны и для геологического дешифрирования, которое заключается в выявлении и установлении геологической природы объектов, не только выходящих на земную поверхность и нашедших прямое отражение снимках, но и скрытых растительным покровом, рыхлыми отложениями, плитным чехлом и проявленных на снимках опосредованно через различные элементы ландшафта.

Из определения вытекает, что выражение «дешифрирование объектов (рельефа, растительности и т.д.)» не вполне точно, правильнее говорить о «дешифрировании изображений объектов» или «дешифрировании изображений».

Индикатор. О пределение одних компонентов ландшафта по другим, физиономичным, легко опознаваемым на снимке, так называемым индикаторам, — распространенный прием географического дешифрирования.

Индикатор - это наблюдаемый на снимке признак, который позволяет установить труднонаблюдаемый или скрытый геологический объект.

Известно, что наличие рыхлых осадков, серпентинитов, глинистых сланцев, высокая степень раздробленности почв (пород), повышенный тепловой поток и выходы термальных вод (способствующие пластичности пород) – снижают концентрацию напряжения. Концентрация напряжения повышается в активных зонах (скрытых на глубине под толщей недислоцированных отложений), тектонических покровах или слоях земной коры с иным (чем на глубине) расположением активных структур. Наиболее опасные зоны – это участки сочленения разломов разных направлений, активные в разных слоях земной коры (пример: Центральные Кызылкумы).

В основе ландшафтно-индикационного метода дешифрирования заложен:

Анализ корреляционных связей выявленных на снимках фотоаномалий с внешними и внутренними компонентами ландшафта

Дешифрирование геологических объектов посредством их индикаторов, или косвенных дешифровочных признаков.

Различают частные и комплексные индикаторы:

  • частными индикаторами чаще являются растительность и рельеф,
  • комплексными индикаторами является облик природно-территориальных комплексов (что относится к ландшафтному методу дешифрирования).

Индикационные связи - это связи явных, физиономичных компонентов ландшафта со скрытыми геологическими структурами.

Применение косвенного дешифрирования . Роль косвенных дешифровочных признаков тем больше, чем мельче масштаб снимков и больше охват территории. Поэтому их чаще используют при географическом дешифрировании (ярким примером применения ландшафтного метода служит изучение и картографирование подземных вод, рельефообразование, формирование берегов морей и т.д.). При топографическом дешифрировании – их используют редко.

Трансформирование аэрофотоснимков

Из-за влияния углов наклона при аэрофотосъемке и влияния рельефа местности изображение на аэрофотоснимке не соответствует плану и поэтому возникает задача трансформирования аэрофотоснимка.

Трансформированием называется преобразование центральной проекции, которую представляет собой аэрофотоснимок, полученный при наклонной проекции главного луча, в другую центральную проекцию, соответствующую отвесному его положению, с одновременным приведением изображения к заданному масштабу.

Наиболее распространен способ трансформирования при помощи особых оптических приборов - фототрансформаторов . Он состоит из проекционного фонаря с источником света, объектива, кассеты и экрана, на который проектируется трансформируемый снимок. Фототрансформатор позволяет устранить искажения аэрофотоснимков перемещением и наклоном кассеты и экрана до совпадения четырех ориентирующих точек аэронегатива с одноименными точками опорного планшета. Если после этого вместо планшета на экран положить фотобумагу и переснять негатив, то получают трансформированный снимок.

После трансформирования из рабочих площадей составляют план местности, который называется фотопланом.

На фотопланах вся контурная часть представляет собой фотографически уменьшенное изображение предметов и контуров местности. Фотоплан точнее воспроизводит ситуацию местности, чем топографическая карта.

11.9. Сгущение планово – высотного обоснования аэросъемки

Для трансформирования снимков надо иметь на них четыре точки с известными координатами. Эти точки могут быть получены при полевой привязке снимков, но тогда существенно увеличиваются объемы и стоимость работ. Поэтому в полевых условиях производится разряженная привязка, при которой определяются координаты двух – трех точек на маршрут, а плановое положение четырех трансформационных точек каждого снимка получают в камеральных условиях.

Процесс сгущения планового положения точек может выполняться путем построения специальных сетей фототриангуляции или фотополигонометрии, пункты которых определяют аналитически на электронно-вычислительных машинах, а также путем графического построения.

Распознавание по фотоизображению объектов местности и выявление их содержания с изображением условными знаками качественных и количественных характеристик называется дешифрированием.

Дешифрирование – наиболее важный, ответственный и весьма трудоемкий процесс при изучении местности и явлений по аэрофотоснимкам.

От точности определения положения на фотоизображении дешифрируемых элементов местности, достоверности и полноты их характеристик в значительной степени зависит качество получаемой по фотоснимкам информации.



В зависимости от содержания дешифрирование делится на топографическое и специальное.

При топографическом дешифрировании с аэрофотоснимков получают информацию о земной поверхности и элементах местности для составления топографических карт и планов.

При специальном дешифрировании отбирают тематическую информацию (геологическую, геоботаническую, об элементах железнодорожного пути и т.п.).

Дешифрирование также разделяют на полевое, камеральное и комбинированное.

Полевое дешифрирование заключается в сличении аэрофотоснимка с местностью. Этот способ обеспечивает наивысшую полноту качества и достоверности результатов дешифрирования. Однако полевое дешифрирование требует значительных затрат времени и средств.

Камеральный способ дешифрирования заключается в анализе фотоизображения объектов местности с использованием всего комплекса признаков дешифрирования. При этом используются альбомы эталонов дешифрирования.

Комбинированный способ сочетает в себе процесс камерального и полевого дешифрирования. Бесспорно распознаваемые объекты местности дешифрируются в камеральных условиях, затем осуществляют полевую доработку сложных участков.