Как добывают нефть на морской платформе. Инновационные технологии подводной добычи углеводородов на шельфе арктики. Самоподъемная платформа типа Jack

В настоящее время до 70% всей энергии, потребляемой в мире, дают нефть и газ. Истощение этих природных ресурсов на суше обусловливает увеличение их добычи в море. Уже через 10-20 лет половину необходимой индустриальным регионам земного шара энергии смогут дать месторождения, расположенные в морских акваториях. Ни огромные затраты на сооружение сложнейших технологических объектов, ни крайне тяжелые природные условия освоения подводных месторождений не остановят роста добычи нефти и газа из-под морских глубин.

Основной ее объем будет обеспечен в результате разработки залежей в континентальном шельфе, где на 16 млн км 2 возможно скопление нефти и газа.

Объем морских поисково-разведочных работ и добыча нефти и газа будут продолжать расти, в том числе и в глубоководных районах, несмотря на то, что эти работы требуют огромных затрат. В морскую нефтегазовую промышленность каждый год вкладываются сотни миллиардов долларов США, причем более трети всех инвестиций приходится на разведку и эксплуатацию.

Весьма значителен парк передвижных плавучих буровых установок, с помощью которых ежегодно бурят более 2 тысяч скважин, включая примерно 850 поисково-разведочных. Спрос на подвижные буровые платформы достаточно устойчив и составляет почти тысячу единиц.

Мировая потребность в баржах-трубоукладчиках и трубозаглубителях, а также в плавучих кранах оценивается до 250 - 300, а во вспомогательных судах - до 1800 единиц. Сохраняется спрос на стационарные стальные и бетонные платформы и на подвижные буровые платформы.

Прогнозируется рост объемов работ, связанных с инспектированием и ремонтом морских сооружений (трубопроводов, платформ и т. д.). В связи с этим ожидается увеличение спроса на подводные суда для наблюдения за работами по прокладке и ремонту подводных нефте- и газопроводов, а также установки подводных систем для эксплуатации скважин.

Несмотря на расширение использования манипуляторов с дистанционным управлением, увеличится спрос на водолазные работы, так как во многих случаях робототехнические устройства по-прежнему не могут заменить человека при работе под водой.

К 2005 г. новые месторождения нефти и газа были открыты в 96 странах; разведанные запасы газа при этом составили (По данным журнала «Oil and Gas Journal») более 146 трлн куб. м, а накопленная мировая добыча газа - 69 трлн куб. м. Основные разведанные запасы газа сосредоточены в России, Иране, Катаре, Саудовской Аравии, Абу-Даби, США.

Большинство стран мира проявляет высокую активность в разведке и разработке морских месторождений. Важной составной частью этой деятельности является строительство морских трубопроводных систем.

В ближайшие годы Россия имеет хорошие перспективы в части освоения морских месторождений, обусловленные высокой перспективностью российского шельфа. Как показывают исследования, в России из общего объема неразведанных ресурсов на месторождения шельфа приходится более 42%.

Крупные ресурсы газа сосредоточены на шельфах Баренцева, Печорского, Карского, Лаптевых, Восточно-Сибирского, Чукотского, Берингова, Охотского, Японского морей, Восточно-Камчатского и Южно-Курильского секторов Тихого океана, а также Каспийского и Азовского морей.

Для шельфов морей России установлено следующее:

    недра почти всех акваторий страны (за исключением Белого моря) перспективны в отношении нефтегазоносности; на долю арктических морей приходится 85% начальных суммарных ресурсов углеводородов, дальневосточных - около 14% и внутренних- несколько более 1%; концентрация ресурсов на шельфе высокая;

    основная часть наиболее достоверных ресурсов углеводородов сосредоточена на шельфе с глубиной дна моря от 20 до 50 м и в разновозрастных осадочных отложениях, залегающих на глубинах до 4-5 км, и технически доступна для бурения;

    на шельфах наиболее перспективных морей РФ в общем объеме начальных суммарных запасов углеводородов преобладают более достоверные ресурсы и выявленные месторождения газа.

Всего на шельфах открыто 34 газовых, газоконденсатных и газонефтяных месторождения, в том числе на шельфе Балтийского моря - 2, Баренцева и Печорского морей - 10, Карского - 8, Охотского - 8, Каспийского - 1, Азовского - 5.

Среди перечисленных есть уникальные по запасам газа месторождения: Штокмановское, Русаковское и Ленинградское. Крупными являются месторождения Приразломное, Лудловское, Чайво-море, Одопту-море, Пилыун-Астохское и др.

До 2050 г. важное значение для добычи газа будут иметь северные акватории Западной Сибири и акватории южной части Карского и Баренцева морей. В подготовке новых запасов газа за счет неразве­данных ресурсов первостепенная роль будет постепенно переходить от Западной Сибири к западной части арктического шельфа, Восточной Сибири и дальневосточным акваториям. После 2050 г. роль акваторий, особенно северных, включая восточный сектор шельфа, будет возрастать.

Таким образом, в ближайшие десятилетия с увеличением добычи газа и нефти из месторождений шельфа России потребности в морских трубопроводах будут нарастать.

Способ применения подводных промыслов является наиболее перспективным при освоении глубоководных месторождений. Он основан на использовании так называемых систем подводного заканчивания скважин, у которых устья располагаются на морском дне. Там же находятся оборудование системы сбора и транспорта продукции скважин, подводные нефтепроводы, системы ППД, энергоснабжения, телекоммуникаций и управления. Подводные промыслы могут быть полностью автономными, а также применяться в сочетании со стационарными или плавучими технологическими платформами. По сравнению с традиционными методами освоения, когда устья скважин размещены на стационарных платформах, данный способ имеет следующие преимущества:

  • ускоренный вывод месторождения на проектную мощность за счет пуска в эксплуатацию ранее пробуренных с ПБУ скважин;
  • гибкость технологии подводной добычи из-за возможности быстрой смены оборудования (например, при переходе с фонтанного на газлифтный способ добычи путем замены одной технологической платформы на другую);
  • возможность сезонной и непрерывной разработки месторождений, расположенных в суровых арктических условиях, независимо от наличия ледовой обстановки, торосов, айсбергов и др.

Оборудование для подводной эксплуатации подразделяют на "мокрые", "сухие" и гибридные системы. Наибольшее распространение в мире получили "мокрые" системы (90% всех подводных скважин), которые отличаются большим конструктивным разнообразием - это может быть как отдельно стоящая фонтанная арматура, так и сложные, размещенные внутри подводных гидротехнических сооружений комплексы, включающие куст из 12-24 устьев скважин и более, манифольд, энергетический блок, систему управления и т.д.

Система добычи "мокрого" типа состоит из устья одной скважины, оборудованной подводной фонтанной арматурой и соединенной выкидной линией (подводным трубопроводом) и райзером со стационарной платформой или плавсредством, как правило, расположенными над скважиной. Для этой цели могут быть использованы переоборудованные танкеры, плавучие и стационарные платформы.

Для контроля за параметрами добываемой продукции, положением запорных органов и управления ими существует несколько типов систем, выполняющих указанные функции: с гидравлическим, электрическим и комбинированным приводом. При этом пульт управления расположен на платформе и связан с подводным устьем шлангокабелем.

Заканчивание и ремонт подводной скважины осуществляют с ППБУ или бурового судна. В первом случае подводную арматуру монтируют на устье при использовании специального технологического стояка и автономной гидравлической станции управления. Ремонт, обследование и техническое обслуживание проводят или с помощью водолазов, или телеуправляемых необитаемых подводных аппаратов либо роботов-манипуляторов.

"Сухие" системы, разработанные, например, фирмой "Кэн Оушн", представляют собой одноатмосферную камеру с расположенным внутри нее устьевым оборудованием. Камера оснащена шлюзом для стыковки с подводным аппаратом, доставляющим в нее оператора. Преимущества этого типа систем заключаются в том, что они могут работать на больших глубинах моря (до 800 - 900 м) без применения сложной водолазной техники, которая в настоящее время пока еще не соответствует требованиям для данных условий.

Гибридные системы состоят из основного комплекта оборудования устья скважин, размещенного на дне, и дополнительного - на стационарной платформе. Оба они находятся один над другим и соединяются вертикальным райзером. Число таких систем составляет около 5% общего числа подводных скважин.

Анализ современных тенденций освоения морских месторождений нефти и газа на средних и больших глубинах моря с использованием систем подводного заканчивания показал, что:

  • для изолированных небольших (так называемых малорентабельных) месторождений, разрабатываемых 1 - 2 скважинами, в качестве технологической платформы используют переоборудованный танкер, на палубе которого размещают оборудование для подготовки нефти. Танкер посредством вертлюга швартуют к плавучему погрузочному бую, соединенному со скважиной глубоководным райзером;
  • для месторождений средних размеров предполагают применять подводный манифольдный центр, включающий куст скважин на одной донной плите и ряд сателлитных, используемых как добычные или нагнетательные. Манифольд соединяют со стационарной или плавучей платформой с помощью нескольких гибких трубопроводов, которые, как показали натурные эксперименты в Северном море, успешно выдерживают возникающие при этом динамические напряжения. Такие системы проходили опытную проверку на месторождении Балморал;
  • для крупных месторождений используют систему, состоящую из центрального куста скважин с подводным манифольдом, нескольких периферийных кустов и ряда одиночных скважин, управляемых со стационарных или плавучих технологических платформ.

Конструкции систем подводной добычи нефти

В случае разработки морских месторождений многоскважинными системами традиционную буровую технику можно применять лишь после сооружения и ввода в эксплуатацию стационарной платформы. Это затруднило бы окупаемость исходных капиталовложений вплоть до последних этапов освоения залежей. Вследствие этого разработка глубоководных месторождений и их периферийных участков, а также месторождений в районе Арктики стала бы экономически нерентабельной.

Если стоимость сооружения стационарной платформы оказывается экономически неприемлемой, следует использовать подводную добычную систему, содержащую комплекс средств эксплуатации: плавучие буровые системы, фонтанную арматуру, рабочие трубопроводы и приспособление для нагнетания газа и воды. В противном случае подводная система может служить лишь коллектором для скважин-спутников, которые соединены с мелководной стационарной платформой, либо посредством гибкого стояка с плавучей платформой в пределах промысла. Такое применение подводных эксплуатационных средств позволяет рентабельно разрабатывать периферийные месторождения и даже небольшие залежи крупного промысла, доступ к которым невозможен с центральной платформы при горизонтально или наклонно направленном бурении.

Подводные промысловые системы в своем многообразии могут включать как одну сателлитную освоенную скважину, так и кустовой эксплуатационный комплекс с полным обеспечением подсобной энергетикой. а также коллектор для транспортирования добытой продукции на плавучую установку. Тип выбираемой системы зависит от многих факторов: места, размера и глубины разрабатываемого месторождения и др.

Подводные промысловые системы подразделяют на четыре следующих варианта:

В начальный период разработки месторождения одиночные скважины-спутники могут служить для ранней добычи флюида. Разведочно-эксплуатационные скважины могут быть завершены посредством подводной "елки". Эксплуатацию осуществляют с помощью выкидных линий, подающих продукцию на подводный коллектор или платформу. Такой тип разработки пригоден и для дальнейшего использования в зависимости от глубины воды, в которой планируется размещение промысла.

Важное значение имеет защита устьев подводных скважин от механических повреждений льдом, тралами судов, якорями, при прокладке трубопроводов.

Известны несколько способов защиты устья скважины с помощью размещения фонтанной арматуры в углублении бункера под дном, либо использования специальной вставки или кессона. В этом случае запорную арматуру помещают в специальных обсадных трубах скважины непосредственно под дном.

Схемы подводной системы заканчивания скважин с различной защитной конструкцией устья.

Одиночные освоенные скважины, обычно называемые сателлитными, широко использовали при освоении подводных месторождений. Их применяли в Северном море в течение нескольких лет для разработки пласта с доступом к отдаленным его участкам, недосягаемым с помощью наклонно направленного или горизонтального бурения. Одиночные скважины соединяют с платформой, находящейся на расстоянии в несколько километров. Сателлитные скважины также можно использовать с целью нагнетания воды для увеличения отборов.

На небольшой глубине (меньше 50 м) особенно важным параметром является высота устья скважины и его защитной крыши (например, 8 м). Такая система подвергается высоким нагрузкам окружающей среды и представляет потенциальную опасность для мореходства. В случае мелководной конструкции следует учитывать следующие факторы:

  • воздействие сильных течений, трение и перемещение волн;
  • расстояние между защитной крышкой и уровнем моря, соотнесенное с осадкой судов, ожидаемых в зоне.

Схема с несколькими скважинами спутниками

Система, состоящая из нескольких скважин-спутников, включает центральный коллектор, связанный с ними выкидными линиями. Последний является центром сбора, распределения и управления сателлитными скважинами.

Данный вариант обладает следующими преимуществами:

  • новые скважины могут осваиваться, подсоединяться к коллектору и вводиться в эксплуатацию с минимальным нарушением работающих;
  • требуется только вертикальное бурение одиночных скважин, так как они размещаются в оптимальных местах;
  • можно подсоединять любое число скважин к коллектору, что обеспечивает гибкость разработки месторождения;
  • есть возможность вводить в коллектор контуры очистных скребковых устройств.

К недостаткам относятся следующие аспекты:

  • для каждой сателлитной скважины требуются собственные выкидные линии и устройство управления, из-за чего компоновка морского основания может оказаться перегруженной, что способствует повреждениям при отсутствии защитных мер;
  • разброс сателлитных скважин повышает возможность их повреждения рыболовными снастями или незакрепленными якорями;
  • в зависимости от условий эксплуатации каждой скважине могут потребоваться индивидуальные защитные конструкции, изготовление и установка которых влечет за собой большие расходы, в особенности если необходимо применять опорные сваи;
  • ремонтные работы предполагают значительные передвижения между скважинами, поэтому во избежание повреждения других установок следует тщательно укреплять ремонтные суда якорями;
  • повреждение трубопровода управления либо нефтегазового экспортного влечет за собой потерю добычи всей установки.

Схема подводного промысла с кустом скважин

Система куста состоит из центрального коллектора и индивидуальных скважин, расположенных в непосредственной близости одна от другой и коллектора, причем скважины обычно размещают одно- или двухрядно.

Рассматриваемая система имеет следующие преимущества:

  • число переходных соединительных муфт минимально, причем они могут быть стандартизированы;
  • промысел имеет компактные размеры и не подвергается опасности повреждения рыболовными снастями или якорями;
  • ремонтные работы довольно просты и требуют незначительных перемещений судов между скважинами;
  • коллектор на 50 - 60% меньше по объему и массе, поэтому его гораздо легче изготовить, чем рабочий темплет. Конструкция позволяет также предусматривать дальнейшие изменения и дополнения;
  • в коллектор можно включать очистные скребковые устройства.

Недостатки данного варианта состоят в следующем:

  • полная эксплуатация промысла может потребовать бурения наклонно направленных скважин;
  • больший риск повреждения предметами других подводных установок в период бурения и ремонтных работ;
  • отсутствие темплетов для бурения скважин;
  • могут понадобиться индивидуальные защитные крышки;
  • необходимость установки между устьями скважин и коллектором переходных муфт, на что уходит много времени;
  • возможность потери добычи с помощью всей установки при повреждении главного трубопровода управления жизнеобеспечением промысла либо экспортного (магистрального) трубопровода.

Схема подводного промыслового центра

Подводный промысловый центр аналогичен кустовой системе, но в этом случае все устья скважин, трубопроводы-коллекторы, блоки управления и дозировки химических реагентов объединены в одну конструкцию.

Другим примером системы с промысловым центром является устройство, где используют для защиты коллектора конструкцию из четырех отсеков и четырех фонтанных арматур. Наличие коллектора обеспечивает возможность добычи с помощью газлифта и нагнетания воды по каждой скважине. Системы напорных трубопроводов в данном случае подсоединены к платформе, находящейся на расстоянии около 7 км, а рабочий коллектор - к ее сепаратору для отделения газа. Последний затем либо используют вновь для нагнетания, либо сжигают на факеле. Продукцию (нефть) без газа потом направляют в главный экспортный трубопровод.

Преимущества такой системы состоят в следующем:

  • схема имеет компактные размеры;
  • нет необходимости в наличии связующих выкидных линий и переходных муфт, а нужна только магистраль к главной установке;
  • одна рама защищает все подводные системы;
  • имеет место более эффективная компоновка трубопроводов и коллектора;
  • в конструкцию можно включать очистные скребковые устройства;
  • минимальное число перемещений судов между отдельными скважинами, что снижает стоимость ремонтных работ;
  • конструкция выполняет роль подводного комплекса для бурения;
  • имеется возможность привязки скважин-спутников;
  • требуется всего одна установка за исключением крепления фонтанной арматуры;
  • несомненная универсальность обслуживания устья скважины.

Недостатки данной схемы состоят в следующем:

  • большие капитальные затраты;
  • необходимость наклонно направленного бурения;
  • требование при необходимости значительной подъемной мощности для установки;
  • возможная перегрузка запорной арматуры, что обусловлено сложными требованиями управления в связи с сообщением между собой разнопараметрических скважин при различных значениях расхода и давления потоков.

Однажды, случилось это уже довольно давно, был я в командировке в городе Мурманске. Поехали мы с приятелем на машине. Если подъезжать к Мурманску по суше, например по шоссе, то порт откроется сверху, словно с птичьего полета. В узкой горловине Кольского залива толпятся корабли. Сколько их - не счесть… Но вот среди знакомых силуэтов выделился один, никогда раньше мною не виданный. В целом - корабль как корабль, только в центре палубы стоит ажурная башня — вышка, выкрашенная поэтажно в белый и красный цвета. Приятель — геолог объяснил, что это судно для разведочного морского бурения в высоких широтах! Я столько слышал интересного об этих новых буровых судах, что во что бы то ни стало решил побывать на нем и все хорошенько разглядеть.

Корабль стоял у стенки. На него грузили продукты, что — то подвязывали, что — то упаковывали. Через несколько часов - отход…

Сопровождающий быстро вел меня по длинным гулким коридорам с ковровыми дорожками, с которых еще не успели даже снять полиэтиленовые чехлы. Все было здесь таким новым, таким чистым… Мы шли быстро, и я едва успевал читать таблички на дверях: «Второй помощник», «Старший механик», «Второй штурман»… все, как полагалось на обычном судне. И вдруг пошли таблички совсем иного плана: «Геологи», «Геофизики», «Механики по буровому оборудованию». «Буровые мастера», «Начальник буровой»…

Через некоторое время свободный от вахты второй помощник капитана скороговоркой стал вводить меня в курс дела.

Значит так: длина корпуса судна - сто сорок девять метров, ширина - двадцать пять. Высота вместе с буровой - пятьдесят два метра, водоизмещение - двенадцать тысяч тонн…

Я мысленно про себя быстро перевожу цифры в образы: пятьдесят два метра высоты. Если считать по три метра на этаж - это примерно шестнадцатиэтажный дом!

Судно имеет семь винтов.

Зачем столько?

Два главных - ходовые. Три носовых, два кормовых винта для удерживания корабля на выбранной точке бурения, если ветра, снос, сильное волнение и так далее. Благодаря этим винтам можем работать на «точке» при высоте волны примерно до пяти метров. Для Баренцева моря это почти предел.

Но как на такой зыбкой поверхности, как вода, вы можете закрепиться на одном месте и бурить, будучи связанные со скважиной жесткой колонной бурильных труб?

Вот после этого вопроса и открылись шлюзы красноречия моего собеседника. Он рассказал, что режимами семи винтов ведают три мощных компьютера. Ни один лаже самый опытный рулевой не в состоянии одновременно управлять ими так, чтобы удерживать судно на «точке». Другое дело - компьютеры. Без помощи человека, по сигналам многочисленных датчиков управляю! они работ oт винтов, учитывают сигналы навигационных искусственных спутников Земли, указывающих кораблю, как подойти к заданному району разведки. Электронные помощники учитываю! все полученные данные и выдают команды на управление работой винтов.

Вот могучая буровая установка, так сказать «сверлильный станок». От него вращение передается через систему труб на долото в забое. При этом угол наклона может немножко меняться, - значит, корабль не обязательно должен стоять «мертво» на воде, у него есть некоторая возможность и «поплясать» на волнах, не прерывая бурения. А вот и механизм, обеспечивающий безопасность судна при неожиданном выбросе газа или нефти, - специальный режущий «превентор» прерыватель. Он мгновенно, как ножом, срезает буровую колонну и наглухо закрывает устье скважины.

На буровой все механизмы еще новенькие, блещут свежей краской. И всюду трубы, трубы, трубы - разного диаметра, с разной толщиной стенок. Много их нужно, труб этих. Раньше наука считала шельф до глубин двести метров. Бурили и с трехсот метров, потом шагнули сразу на семьсот. А ныне бурят уже где — то на глубинах до тысячи двухсот метров от уровня моря… Новые времена, новые требования, новая техника и новые задачи.

Подводная добыча нефти - дело дорогое. И пока далеко не любые глубины доступны промышленной разработке с поверхности воды. Сегодня специалисты предлагают новый путь: отказаться от традиционных буровых платформ и все оборудование монтировать прямо на дне.

Под водой нет ни штормов, ни волнения. Конечно, для этого водолазы должны будут освоить серьезные глубины, научиться монтировать на дне буровые установки, отделять от нефти неизбежно примешивающуюся к ней морскую воду и строить хранилища… Проблем много. Но и техническая мысль на месте не стоит.

Кратко рассмотрена история развития подводных технологий в мире и на российском шельфе. Для морей России характерен длительный сезонный ледовый покров, что мешает непрерывному развитию данных технологий или приводит к отсутствию их применения. Основная проблема связана с обеспечением надежности применения подводных технологий, поскольку в ледовых условиях техобслуживание и ремонт подводного оборудования затруднены и требуют больших затрат. В статье предлагается алгоритм оценки надежности подводных технологий и определяются требования к подводному оборудованию для применения в России: проектирование с дублированием стандартных компонентов, надлежащие испытания и строгий контроль качества при изготовлении. Развитие нового поколения подводного оборудования для России должно быть направлено на совершенствование технологий компримирования газа, очистки и утилизации пластовых вод, мониторинга состояния и контроля параметров добычи и транспортировки продукции скважин, проведения технологических операций автономными средствами, энергообеспечения, связи и управления. Показаны преимущества разработки морских месторождений с подводным расположением устьев скважин, основное из которых – это поочередной ввод в эксплуатацию, дающий ускоренное получение продукции. Представлена трехэтапная методология разработки и обустройства подводных месторождений и выделены основные факторы: минимизация буровых работ и финансовых затрат, рациональное размещение оборудования.

Ключевые слова: МОРСКАЯ НЕФТЕГАЗОДОБЫЧА, ПОДВОДНЫЙ ДОБЫЧНОЙ КОМПЛЕКС, ГОТОВНОСТЬ ТЕХНОЛОГИЙ, НАДЕЖНОСТЬ, ПОДВОДНАЯ СЕПАРАЦИЯ НЕФТИ И ГАЗА, КОМПРЕССОР, КОНТРОЛЬ СОСТОЯНИЯ.

УДК 622.323+324
Д.В. Люгай, д.т.н., ООО «Газпром ВНИИГАЗ» (Москва, РФ)
М.Н. Мансуров, д.т.н., проф., ООО «Газпром ВНИИГАЗ», [email protected]

Литература:

    API RP 17N Recommended Practice for Subsea Production System Reliability and Technical Risk Management [Электронный ресурс]. Режим доступа: http://nd.gostinfo.ru/document/4523527.aspx

    DNV-RP-A203 Recommended Practice. Technology Qualification [Электронный ресурс]. Режим доступа: http://rules.dnvgl.com/docs/pdf/DNV/codes/docs/2013-07/RP-A203.pdf (дата обращения: 01.06.2018).

    Мокшаев Т.А., Греков С.В. Опыт применения и перспективы развития систем подводной сепарации нефти и газа // Вести газовой науки: Науч.-техн. сб. 2015. № 2 (22). С. 69–73.

Открыть PDF

На российском Арктическом шельфе и шельфе дальневосточных морей в настоящее время открыты нефтегазовые месторождения, где сочетание глубин акваторий и ледовых условий не позволяет применять традиционные технологии добычи углеводородов с помощью стационарных или плавучих платформ. Для их освоения требуется создание специальных подводных комплексов. Номенклатура подводных технических средств, изготавливаемых в мире и обеспечивающих нефтегазодобычу, весьма широка. В статье рассматриваются разрывы и недостатки в развитии таких технологий в целях применения их в специфических условиях российского шельфа. Они в основном обусловлены надежностью и операциями по его обеспечению: техобслуживанием и ремонтом подводного оборудования, поскольку в ледовых условиях эти операции затруднены и требуют больших затрат.

Первая скважина с подводным расположением устья была пробурена в 1943 г. на оз. Эри (США) на глубине моря 11,5 м. В 1961 г. компанией Cameron была разработана и изготовлена первая промышленная подводная фонтанная арматура для скважины в Мексиканском заливе. Основным побудительным мотивом к развитию морской нефтедобычи в мире стал нефтяной кризис 1970-х гг. из-за эмбарго, наложенного странами ОПЕК на поставку «черного золота» западным странам. Такие ограничения вынудили американские и европейские нефтяные компании искать альтернативные источники нефтяного сырья путем создания новых технологий, позволявших бурить морские скважины на больших глубинах, и развития подводных технологий добычи углеводородов.

Первая система управления подводным добычным комплексом (ПДК) была установлена в 1963 г., а в 1979 г. появилась подводная система с мультиплексным электрогидравлическим управлением. Прогресс в разработке ПДК в течение 1980–2015 гг. был отмечен появлением подвод- ной фонтанной арматуры в горизонтальном исполнении, новых систем управления, в том числе с полным электроприводом.

Сегодня подводное оборудование для добычи углеводородов в мире производят не более 10 компаний, но насчитывается более 130 морских месторождений, где применяются технологические процессы по добыче углеводородов на морском дне. География распространения подводной добычи обширна: шельфы Северного и Средиземного морей, Индия, Юго-Восточная Азия, Австралия, Западная Африка, Северная и Южная Америка. В России первые добычные комплексы были установлены на шельфе Сахалина в 2013 г. в рамках обустройства Киринского месторождения.

ОСОБЕННОСТИ ПОДВОДНОЙ РАЗРАБОТКИ

Разработка морских месторождений с подводным расположением устьев скважин хотя и достаточно сложна, но обладает рядом преимуществ перед традиционными способами надводного оборудования устьев. Основное преимущество заключается в возможности ввода морского месторождения в эксплуатацию очередями, что на практике ведет к ускоренному получению первой продукции.

Пробурить с бурового судна несколько скважин, оборудовать их устья соответствующей подводной арматурой и ввести в эксплуатацию можно значительно быстрее, чем устанавливать дорогостоящую стационарную платформу для бурения с нее наклонно-направленных скважин. Кроме того, подводный метод разработки позволяет выявить некоторые геолого-физические и эксплуатационные параметры месторождений на более ранней стадии разработки.

Общая методология проектирования разработки и обустройства подводных месторождений, по существу, соответствует традиционным схемам, применяемым для ме- сторождений суши и морских место- рождений с платформенным обустройством. Она включает три этапа: анализ характеристик месторождения и условий его эксплуатации; обоснование принципов/концепций разработки залежей и обустройства промысла, которые варьируются в зависимости от региона, особенностей организации проектирования, строительства и эксплуатации месторождения и т. п.; анализ и оптимизацию технологических процессов, местоположения скважин, промысловых объектов и др.

Вместе с тем отличительная особенность проектирования подводных месторождений – выявление и проверка определяющих факторов, влияющих на выбор проектных решений. Например, известно, что низкие температуры требуют использования специальных материалов для подводных конструкций, удорожающих их стоимость, но температуры морской воды на глубинах более 30–50 м практически одинаковы во всех регионах. Температуры транспортировки и хранения оборудования в Арктике, как правило, ниже –40…–50 °С. Но надо ли транспортировать и хранить, а также испытывать подводные системы при таких экстремальных температурах, удорожая конструкцию?


В рамках проекта Arctic Development Roadmap были выявлены и систематизированы ключевые темы, решение которых, по мнению авторов проекта, необходимо для разработки нефтяных и газовых ресурсов в Северном Ледовитом океане. Согласно этому документу к существенным факторам, воздействующим на будущее развитие, отнесены технологии транспорта углеводородов, углубление дна и рытье траншей, моделирование и тренинги, а к потенциально неустранимым помехам – защита окружающей среды. По нашему мнению, подобные оценки не являются вполне убедительными.

При выборе решения по разработке месторождения определяющим фактором является минимизация буровых работ и финансовых затрат путем оптимизации числа и конструкций скважин, а также рационального размещения оборудования на морском дне. Должны проверяться функциональные требования к монтажу и эксплуатации, включая условия транспортировки, хранения и испытаний, а также требования по проведению одновременных операций (например, бурение и монтаж, бурение и добыча).

Преимуществом системы с подводным расположением устья скважин является защищенность всего оборудования, установленного на дне, от внешних погодных условий. Известно, что надводные стационарные платформы представляют значительную навигационную опасность, в то время как при установке оборудования под водой такая опасность практически отсутствует; устраняется также пожарная опасность.

При этом существенным недостатком систем с подводным расположением устья является трудность доступа к устьевому оборудованию, особенно при наличии ледового покрова и необходимости частых ремонтов скважин. Так, по данным компании Statoil, одного из лидеров в области технологий подводного освоения месторождений, сравнение статистических показателей эффективности добычи за 2010–2012 гг. при платформенном и подводном обустройстве месторождений Северного моря по всей цепочке от скважины до платформы показало, что коэффициент эксплуатации скважин с сухим устьем (на платформах) составляет 91,8 %, а для подводных скважин – 86,5 %, т. е. эффективность платформенной добычи на месторождениях на 5,3 % выше.

Повышенные потери добычи на месторождениях с ПДК связаны в основном с райзерами и промысловыми трубопроводами, приводящими к внеплановым потерям добычи в связи с необходимостью ремонтно-восстановительного обслуживания (3,7 %). Статистика внеплановых потерь добычи на ПДК приведена на рис. 1.

Очевидно, что для морей России, характеризующихся длительным ледовым режимом и относительной недоступностью устьев скважин в этот период, коэффициент эксплуатации подводных скважин может оказаться существенно ниже.


ПРИМЕНЕНИЕ НОВЫХ ТЕХНОЛОГИЙ

При освоении морских месторождений и обосновании схем размещения подводного добычного оборудования весьма важным является учет специфических условий региона (например, Арктики) и выявление применимости существующих системных решений или выявление разрывов в развитии/отсутствии технологий для обеспечения проектных решений.

Разрывы в процессе развития технологий возможны двух типов: концепции, улучшение которых возможно за счет новых технологий, но при этом существуют апробированные технологии; концепции, которые полностью зависят от новых технологий, так как такие технологии отсутствуют.

Уровень готовности технологий определяется по API RP 17N (см. табл.). Как правило, многие нефтегазовые операторы заявляют о готовности новой технологии к внедрению на месторождениях при завершении стадий разработки TRL 4 и TRL 5.

Проблема обеспечения надежности – одна из важнейших при применении подводной технологии, поскольку инспекция подвод- ного оборудования затруднена, а его обслуживание и (или) замена требуют больших затрат. Кроме того, отказ подводного оборудования непосредственно влияет на состояние окружающей среды. И наконец, подводное оборудование должно обеспечивать непрерывность добычи и окупаемость капитальных вложений.

Согласно данным компании FMC Technologies, оценку надежности новых технологий можно производить по схеме, приведенной на рис. 2, которая основана на методике, разработанной Норвежским квалификационным обществом (Det Norske Veritas) .

Для использования подводных технологий в условиях ледовых морей важно обеспечить приемлемость методов технического обслуживания компонентов подводного оборудования для инспекции, ремонта или замены.

В связи с этим необходимо заложить в подводные системы принцип частичного дублирования, который обеспечивал бы надежность и был гарантией непрерывности добычи. Поэтому модульные системы должны проектироваться с дублированием стандартных компонентов, проходить надлежащие испытания и изготавливаться со строгим контролем качества.

В любой системе могут быть уникальные, предназначенные только для данного месторождения компоненты. Они не извлекаются и служат в течение всего периода разработки месторождения. В такой ситуации возможны два подхода: обеспечить высокую надежность этих компонентов подводной системы; проектировать системы таким образом, чтобы в случае отказа одних компонентов их функции могли взять на себя другие компоненты. Поэтому при решении задач обеспечения надежности подвод- ных систем необходимо сочетать творческую изобретательность с осторожным применением новых идей, а характер обслуживания подводных систем наряду с результатами анализа их рентабельности должен учитываться при решении вопроса о применении подводной технологии.

Рассматривая развитие технологий подводной подготовки продукции скважин, следует отметить, что изначально перед подводным оборудованием ставилась только задача по добыче нефти. В первых проектах под водой проходила только сепарация газа от жидких углеводородов, после чего последние выкачивались насосом на поверхность, а подъем газа осуществлялся под собственным давлением. Вместе с тем задачи использования остаточного потенциала месторождений путем продления периода эффективной эксплуатации, снижения затрат на жизненный цикл месторождения и увеличение добычи обусловили активное развитие технологий подводной подготовки скважинной продукции.

В работе детально рассмот- рены мировой опыт применения и перспективы развития систем подводной сепарации нефти и газа. Согласно размещение технологического оборудования на морском дне в непосредственной близости от устьев скважин позволяет более эффективно осуществлять разработку месторождения, в частности: поддерживать необходимое для добычи тяжелой нефти давление на устье; повышать давление на входе во внутрипромысловую систему сбора для месторождений с низким пластовым давлением; снижать риски, связанные с гидратообразованием в системе сбора; обес- печивать эффективную добычу нефти при повышении уровня обводненности за счет использования сепараторов «нефть – вода»; более гибко подходить к проектированию верхних строений морских платформ за счет размещения части технологического процесса на морском дне; значительно снижать эксплуатационные затраты за счет подбора оптимального дожимного оборудования (например, применяя однофазные насосы взамен многофазных).

Технологии подводного компримирования используются на газовых месторождениях при больших расстояниях до берега или существующих платформ и обеспечивают: снижение капитальных затрат и эксплуатационных расходов; увеличение коэффициента газоотдачи пласта; бесперебойность потока и исключение выбросов и сбросов в море.

Увеличение коэффициента извлечения газа на месторождении Ормен Ланге при применении подводного компримирования показано на рис. 3.

Первая подводная насосно-компрессорная станция была разработана компанией Kvaerner в 1989 г. На основе работ по изготовлению в 2001–2003 гг. компрессора Demo 2000 компанией Aker Solutions в 2004–2012 гг. была разработана и изготовлена пилотная станция Ormen Lange, которая прошла аттестацию технологии и строительства, а также испытания в бассейне. По результатам пилотных испытаний к 2016 г. была изготовлена полномасштабная компрессорная станция мощностью 58 МВт, включающая четыре параллельные линии компримирования, аналогичные пилотному образцу, с общей производительностью 70 млн м3/сут, и установлена на месторождении Ормен Ланге на расстоянии 120 км от берега и глубине моря 900 м.

В 2015 г. на месторождении Асгард, отстоящем на расстоянии 40 км от технологической платформы и глубине моря ~300 м, была также установлена подводная компрессорная станция мощностью 23 МВт и производительностью 21 млн м3/сут, что было обусловлено падением добычи из-за больших потерь давления по сравнению с ожидаемыми и ранним прорывом воды в скважине Z, а также необходимостью исключения динамической неустойчивости в трубопроводах.

Помимо этих двух проектов, компания Statoil реализовала третью программу, связанную с использованием подводной компрессорной станции для влажного газа на действующем месторождении Гуллфакс, которое было открыто в 1978 г. и с 1986 г. находилось в эксплуатации. В данном проекте использовался иной принцип, нежели в системах для месторождений Асгард и Ормен Ланге, а именно многофазная компрессорная технология, не требующая высокой производительности: два компрессора влажного газа мощностью 5 МВт, производительностью 12 млн м3 газа в сутки. Цель проекта заключалась в увеличении добычи на месторождении Гуллфакс путем закачки газа в скважину для повышения давления на нефтеносных горизонтах и дополнительного извлечения 22 млн баррелей нефти. Но уже через месяц после установки в 2015 г. первый в мире подводный компрессор для влажного газа HOFIM был снят с месторождения из-за обнаружения в нем утечки.

Тем не менее опыт применения технологий подводного компримирования на месторождениях Ормен Ланге, Асгард и Гуллфакс выявил преимущества подвод- ного компримирования, которые заключаются в следующем: создание более безопасных условий эксплуатации промысловых объектов (без присутствия людей); предотвращение накопления жидкости в трубопроводе за счет увеличения скорости перекачки; значительное снижение инвестиций и эксплуатационных затрат по сравнению с вариантом компримирования газа на платформе; повышение эффективности компримирования за счет расположения компрессора ближе к скважинам; возможность разработки месторождений с малым пластовым давлением, низкой проницаемостью пласта и сложными свойствами флюидов.

Хотя комплексы подводного компримирования газа в будущем позволят отказаться от объектов надводной инфраструктуры, современные технологии имеют ограничения по энергообеспечению. Они позволяют передавать мощности по энергопотреблению 20–30 МВт на расстояние до 50 км, а мощности 10–20 МВт – до 250 км.

Компания Aker Solutions, мировой лидер в области подводного компримирования, создала новый подводный компактный компрессор Compact GasBooster™ с малыми габаритными размерами (5,5 × 5,0 × 8,0 м), высокоэффективными компонентами, низким весом, упрощенной конструкцией и развивает следующие направления совершенствования компрессорных станций: использование высокоэффективных центробежных компрессоров, допускающих присутствие жидкой фазы в компримируемом газе; максимально компактные решения, ведущие к снижению веса и стоимости подводной компрессорной станции (ПКС); возможности расширения границ применения технологий подводного компримирования – на любых глубинах моря и при большом диапазоне давлений газа; совершенствование систем мониторинга в реальном времени состояния и эксплуатационных параметров работы ПКС, обеспечивающих надежную и безопасную работу подводных систем компримирования.

ЗАКЛЮЧЕНИЕ

Перспективы дальнейшего развития подводных технологий связываются с проблемами освоения месторождений арктических морей, максимизацией нефте- и газоизвлечения путем создания полного подводного обустройства месторождений.

Разработки нового поколения оборудования должны быть направлены на совершенствование подводных технологий в области: компримирования газа; обратной закачки попутного газа; очистки и утилизации пластовых вод; контроля параметров добычи и транспортировки продукции скважин; контроля состояния эксплуатационных характеристик подвод- ного оборудования; проведения технологических операций автономными средствами; энергообес- печения, связи и управления.

Уровень готовности технологий Level of the technology ready

Стадия разработки

Development stage

Описание технологии

Description of technology

Недоказанная идея

Предварительный план. Анализ или испытания не выполнены

Preliminary plan. Analysis or tests are not performed

Аналитически доказанная идея

Analytically proven idea

Функциональность доказана путем расчета, отсылкой к общим характеристикам существующих технологий или испытана на отдельных компонентах и (или) подсистемах. Эта концепция может не отвечать всем требованиям на данном уровне, но демонстрирует базовую функциональность и потенциал соответствия требованиям при проведении дополнительных испытаний

Functionality is proven by calculation, by referring to the general characteristics of existing technologies or it is tested on individual components and (or) subsystems. This concept may not meet all the requirements at this level, but demonstrates the basic functionality and the potential for compliance with the requirements for additional tests

Физически доказанная концепция

Physically proven concept

Концептуальное решение или новые характеристики решения, подтвержденного моделью или испытаниями в лабораторных условиях. Система выявляет способность функционирования в «реальной» среде с имитацией ключевых параметров окружающей среды

Conceptual solution or new characteristics of a solution, confirmed by a model or tests in the laboratory. The system reveals the ability to function in a “real” environment with the imitation of key environmental parameters

Испытание опытного образца

Prototype testing

Создается опытный образец в реальном масштабе и подвергается испытаниям на соответствие техническим условиям в ограниченном диапазоне условий эксплуатации для демонстрации его функциональности

Prototype is being created on a real scale and subjected to testing for compliance with specifications in a limited range of operating conditions to demonstrate its functionality

Полевые испытания

Создается опытный полномасштабный образец и испытывается по программе на соответствие техническим требованиям при имитационных или фактических условиях природной среды

Test full-scale sample is created and tested according to the program for compliance with technical requirements under imitation or actual environmental conditions

Испытания на уровне интеграции в систему

Integration-level testing

Создается опытный полномасштабный образец и интегрируется в эксплуатационную систему с полным интерфейсом и испытаниями на соответствие техническим требованиям

Test full-scale sample is created and integrated into the operational system with a full interface and tests for compliance with technical requirements

Установка системы

Installation of the system

Создается опытный полномасштабный образец и интегрируется в предназначенную эксплуатационную систему с полным интерфейсом и испытаниями на соответствие техническим требованиям в предполагаемой природной среде, где успешно работает в течение ≥10 % предполагаемого срока эксплуатации

Test full-scale sample is created and integrated into the intended operational system with a full interface and tests for compliance with technical requirements in the proposed natural environment and successfully works for ≥10 % of the expected service life

Доказанная технология

Proven technology

Производственная единица интегрируется в эксплуатационную систему и успешно работает в течение ≥10 % предполагаемого срока эксплуатации

Production unit is integrated into the production system and successfully works for ≥10% of the expected service life

В пределах Мирового океана установлено около 70 нефтегазоносных или потенциально нефтегазоносных бассейнов или провинций.

Генетически они разнородны, поэтому при анализе целесообразно сгруппировать их по географическому признаку в 7 основных регионов: Северный Ледовитый океан, Северная Атлантика, Южная Атлантика, западная часть Индийского океана, восточная часть Индийского океана, западная часть Тихого океана, восточная часть Тихого океана.

Северный Ледовитый океан.
Относится к наименее изученному в нефтегазоносном отношении региону Мирового океана. Характеризуется сложными природно-климатическими условиями, сдерживающими освоение его нефтегазовых ресурсов. Относительно исследована юго-западная часть, где выделяют Северо-Аляскинский, дельты р. Макензи - моря Бофорта и Свердрупский нефтегазоносные бассейны. Кроме того, к потенциально нефтегазоносным относят бассейны на шельфе Гренландии и Евразии. Северо-Аляскинский нефтегазоносный бассейн площадью 462 тыс. км включает в себя краевой прогиб Колвилл и две впадины (Умнат на востоке и Чукотскую на западе), разделенные сводом Барроу. В пределах бассейна выявлено свыше 30 месторождений углеводородов, большая часть которых располагается в акватории.

Наиболее крупное, преимущественно нефтяное, месторождение бассейна Прадхо-Бей открыто в 1968 году в США. Основные залежи нефти сосредоточены в песчаниках триаса (на глубине 2460-2650 м), юры (2060-2150 м) и в каменноугольных известняках (2680- 3190 м). Большая часть залежей расположена на суше. Геологические запасы нефти этого месторождения оцениваются в 3 млрд. т. При коэффициенте извлечения 32- -43 % извлекаемые запасы составят 0,97-1,32 млрд. т. Извлекаемые запасы газа - 736 млрд. м. Разработка месторождения началась в 1977 г. после сооружения Трансаляскинского нефтепровода протяженностью 1287 км. Эксплуатация этого месторождения в течение 10 лет принесла США доход 100 млрд. дол.

К западу от месторождения Прадхо-Бей в 1976 г. в юрских песчаниках выявлено крупное нефтяное месторождение Купарук-Ривер с извлекаемыми запасами нефти до 200 млн. т. В 1980 г. в песчаниках триаса, юры и мела открыто нефтяное месторождение Милн-Пойнт. К востоку от месторождения Прадхо-Бей на побережье обнаружено четыре месторождения в песчаных коллекторах палеогена и три месторождения па шельфе (Сег-Дельта, Дак-Айленд, Флаксаман-Айленд) в каменноугольных отложениях, отложениях верхнего триаса и мела.

В целом, разведанные извлекаемые запасы углеводородов 16 морских месторождений Северо-Аляскинского бассейна составляют 1,5 млрд. т нефти и 750 млрд. м. газа. Потенциальные ресурсы оцениваются приблизительно в 3 млрд. т нефти и 1,7 трлн. м. газа.

Нефтегазоносный бассейн дельты р. Маккензи - моря Бофорта занимает площадь 120 тыс. км размеры его 120 Х 500 км. Поисковое бурение начато в 1965 г. Первое месторождение нефти (Аткинсон) открыто здесь в 1970 г. Всего в бассейне выявлено 25 нефтяных и газовых месторождений. Наиболее крупные газовые месторождения на побережье - Таглу и Парсонс - имеют извлекаемые запасы газа порядка 100 млрд. м. каждое. Непосредственно на шельфе моря Бофорта бурение было начато в 1979 г. с искусственных островов в 10 - 15 км от дельты р. Макензи. Сразу же были открыты два газонефтяных месторождения - Адю и Гарри. В 1976 г. начато бурение с плавучих буровых установок, приведшее к открытию в 1978 г. крупнейшего нефтяного месторождения Копаноар. Месторождение находится в 50 км от берега, глубина воды здесь 57 м. Извлекаемые запасы нефти оцениваются в 247 млн. т. Залежи залегают на глубине порядка 3,5 км.

В 1980 г. были открыты нефтегазовые месторождения Тарсьют, Некторалик, Иссунгнак и газовое месторождение Укалерк. Наиболее крупное месторождение Тарсьют. Извлекаемые запасы - 54-220 млн. т нефти. В 1981 г. в 32 км к востоку от месторождения Копаноар обнаружено нефтяное месторождение Коакоак. Четыре залежи залегают в интервале глубин 3240 - 3450 м. Максимальный дебит нефти - 685 т/сут, извлекаемые запасы - 274 млн. т. В 1984 г. в 74 км от берега при глубине воды 33 м выявлено нефтегазовое месторождение Амаулигак с запасами 83-100 млн. м3 нефти и 42 млрд. м3 газа. Дебиты скважин-до 1600 м3/ сут. Всего на побережье нефтегазоносного бассейна дельты р. Макензи-море Бофорта доказанные запасы нефти, оцениваются в 720 млн. т, газа - в 210 млрд. м3. На шельфе соответственно - 500 млн. т и 100 млрд. м3. Потенциальные извлекаемые ресурсы бассейна от 4,5 до 9,6 млрд. т нефти и приблизительно 1,7 трлн. м3 газа.

Свердрупский нефтегазоносный бассейн имеет площадь280 тыс. км2 и занимает большую часть Арктического архипелага Канады. В его строении выделяют две впадины: Парри и Элемир, разделенные горстовидным поднятиями о. Амунд-Рингнес.

С 1969 г. в бассейне открыто 19 месторождений углеводородов, в том числе одно нефтяное. Наиболее крупные газовые месторождения Дрейк-Пойнт (142 млрд. м3) и Хекла (198 млрд. м3) находятся в: юго-западной части бассейна, на северном побережье о-ва Мелвилл. Месторождения связаны с антиклинальными структурами. В 1979 г. в процессе бурения с намороженных ледовых оснований на внутреннем шельфе архипелага Парри при глубине моря 277- 318 м были открыты крупные газовые месторождения Уайтфиш и Чар. Разведанные извлекаемые запасы газа в бассейне достигли, почти 600 млрд. м3.

В начале 80-х годов были выявлены залежи легкой нефти в рифовом массиве девонского возраста (месторождение Бент-Хорн), а также ряд нефтегазовых месторождении (Маклин, Скейт, Сиско). С их открытием извлекаемые запасы нефти в Свердрупском бассейне, достигли 213 млн. т. В целом, для этого бассейна потенциальные извлекаемые ресурсы углеводородов оцениваются в 250 млн. т нефти и 1,13 трлн. м3 газа. Суммарная оценка потенциальных нефтегазовых ресурсов юго-западной части Северного Ледовитого океана (Арктический мегабассейн Северной Америки) составляет: 2,5-4,2 млрд. т нефти и 3,4-4,5 трлн. м3 газа, или 5,2-7,8 млрд. т углеводородов в пересчете на нефть. Здесь уже выявлено 60 морских и прибрежно-морских месторождений, в том числе 35 нефтяных и нефтегазовых и 25 газовых и газоконденсатных.

Северная Атлантика.

Располагается между континентами Северная Америка и Европа примерно до параллели 20" с. ш. На севере ограничена по меридиану восточных островов архипелага Шпицберген. Ширина Северной Атлантики колеблется от 3500 до 6400 км. К Северной Атлантике относят Средиземное море и условно Черное, Азовское и Каспийское моря. В тектоническом отношении Северная Атлантика представлена подводной окраиной материков, океанским ложе и срединно-океаническим хребтом. Нефтегазоносность связана с первой геотектурой океанского дна.

Нефтегазоносные бассейны Северной Атлантики располагаются в пределах подводных окраин Европейского и Северо-Американского материков, а также во внутренних морях типа Средиземного и Черного. К наиболее крупным нефтегазоносным бассейнам относятся: Норвежский, Североморский, Юго-Западной Европы, Лабрадорский, Мексиканский, Карибский, Западно-Средиземноморский, Адриатический, Восточно-Средиземноморский и Южно-Каспийский.

Норвежский нефтегазоносный бассейн расположен вдоль северо-западного побережья Скандинавского полуострова (Норвежское море).
Континентальный склон Норвежского моря осложнен краевым плато Беринг шириной около 200 км, опущенным на глубину до 1200 м и ограниченным с юго-запада поперечным разломом Ян-Майен. В восточной (внутренней) части плато находится рифтогенная впадина Беринг с осадочным чехлом мощностью более 8 км и утоненной до 15 км корой. Поисковое бурение начато в конце 70-х годов. В 1979 г. в Норвежском желобе на границе с Северным морем при глубине воды 340 м открыто газовое месторождение Тролл. Залежи находятся в хорошо проницаемых песчаниках юрского возраста. Освоение месторождения оценивается в 10 млрд. дол. Его детальная характеристика будет приведена позже.

В начале 80-х годов в северных районах Норвежского бассейна (юг Баренцева моря) установлены газовые залежи в триасовых и юрских песчаниках, залегающие на глубине 2,5 км, на площадях Тромсё и Хейдрун (банка Хальтен). На первой из них дебиты газа составили до 1 млн. м3 и конденсата до 30 м3 в сутки.

Североморский нефтегазоносный бассейн площадью 660 тыс. км2 охватывает большую часть акватории Северного моря. К настоящему времени в Северном море открыто более 100 нефтяных и около 80 газовых месторождений, из которых извлекается 24 % нефти и 30 % газа от общемировой морской нефте - газодобычи. Суммарные извлекаемые запасы углеводородов оцениваются в 7,5 млрд. т, из которых более 4 млрд. т приходится па долю нефти. Основная часть запасов (90 % нефти и 34 % газа) тяготеет к Центрально-Североморской рифовой системе, состоящей из нескольких грабенов (Центральный грабен, или Экофикс, Фортиз, Викинг, Северо-Нидерландский). Месторождения углеводородов в пределах Центрально-Североморской рифовой системы распределены неравномерно. Выделяют четыре участка с повышенной концентрацией нефти и газа: северную и центральную части грабена Викинг, грабены Фортиз и Экофиск (Центральный).

Плотность запасов северной части грабена Викинг 230 тыс. т/км2. Здесь сосредоточены крупнейшие нефтяные месторождения - Статьфиорд, Статвик, Брент, Ниниан, Слейпнер. Плотность запасов углеводородов центральной части грабена Викинг равен 120 тыс. т/км2 тут находятся такие месторождения нефти и газа как Берил, Хеймдал, Фригг.
К грабену Фортиз (плотность залежей 100 тыс. т/км2) приурочено крупное одноименное месторождение нефти.

Грабен Экофиск (Центральный) с плотностью запасов 210 тыс. т/км2 содержит крупные газонефтяные месторождения Экофиск и Элдфиск, газоконденсатные месторождения Албускыл и Валгалл.

В грабенах Викинг, Фортиз и Экофиск, площадь которых 22 тыс. км2, сконцентрировано более половины разведанных запасов углеводородов Северного моря. На остальной площади Центрально-Североморской рифовой системы средняя плотность запасов 14 тыс. т/км2.

Ряд месторождений выявлен на горстовидных поднятиях, смежных с грабенами. Так, в пределах поднятия Викинг, ограничивающего с востока одноименный грабен, открыто крупное нефтяное месторождение Озеберг, приуроченное к антиклинальной складке. Залежи находятся в песчаниках средней юры. Дебиты нефти до 770 т/сут, газа - 535 тыс. м3/сут, конденсата-150 т/сут. Общие извлекаемые запасы нефти оцениваются в 100 млн. т, газа - в 50 млрд. м3.

В Западно-Норвежском грабене в 1979 г. в водах глубиной 340 м открыто гигантское газонефтяное месторождение Тролл, приуроченное к антиклинальной складке площадью 700 км2.

В Южно-Североморской впадине установлены в основном газовые месторождения. Здесь известны такие крупные месторождения, как Леман, Индифатигейбл, Хьюитт, Вайкинг, Пласид. На суше находится гигантское газовое месторождение Гронинген (около 2 трлн. м3 газа).

Нефтегазоносный бассейн Юго-Западной Европы охватывает подводную ее окраину. В составе подводной окраины выделяют юго-западный шельф Франции в Бискайском заливе (Армориканский шельф), шельф Пиренейского полуострова (Испанский шельф) и Португальский шельф. Шельфовые зоны узкие (до 160 км), обрываются крутым континентальным склоном. Протяженность шельфов более 2500 км.
На Армориканском шельфе скважины, пробуренные до глубины 4,5 км, не дали положительных результатов. На шельфе Испании в 60 км от берега при глубине моря 146 м открыто нефтяное месторождение Кантабрико-Мар. Нефть легкая (0,837 г/см3), получена с глубины 1450 м из низов эоцена. В 13 км от порта Бермео (близ г. Бильбао) выявлено газовое месторождение с дебитом до 1,4 млн. м3/сут. В Кадисском заливе на продолжении Гвадалквивирской впадины при глубине моря 120 м открыто семь мелких газовых месторождений в песчаниках миоцена. На шельфе Португалии пробурено около 30 скважин, из которых только в трех обнаружена непромышленная нефть. Потенциальные ресурсы шельфа Юго-Западной Европы оцениваются невысоко: 0,3-0,6 млрд. т нефти и 0,1-0,3 трлн. м3 газа. Небольшие месторождения углеводородов открыты на шельфе Ирландского моря, в частности, газовое месторождение Кинсеил-Хед с запасами 40 млрд. м3 и месторождение нефти с запасами 40 млн. т (рифовая впадина Поркьюпайн).

Лабрадорский нефтегазоносный бассейн занимает северо-восточную часть атлантической окраины Северной Америки. В составе Лабрадорского нефтегазоносного бассейна можно выделить несколько нефтегазоносных областей (суббассейнов), из которых наиболее значительны Балтимор-Каньон, Новошотландская, Большой Ньюфаундлендской банки и Лабрадорская.

Нефтегазоносная область Балтимор-Каньон связана с грабенообразно впадиной размером 300X150 км, потенциальные ресурсы области оцениваются в 81 млн. т нефти и 116 млрд. м3 таза.

Более значительные перспективы связываются с погруженным рифовым массивом восточнее Балтимор-Каньона, а также с погруженным плато Блейк и банкой Джорджес.
Новошотландская нефтегазоносная область расположена в районе о-ва Сейбл. Здесь пробурено около 150 скважин и открыто несколько мелких залежей нефти и газа. Запасы газа наиболее крупного месторождения Тебо 13,5 млрд. м3, месторождение Венчур оценивается в 47,6 млрд. м3 газа и 2 млн. т конденсата.

Нефтегазоносная область Большой Ньюфаундлендской банки. Наиболее крупное месторождение нефти Хиберния открыто в 1977 г. Месторождение расположено в 310 км от берега, где глубина моря 80-90 м. Нефтяные залежи находятся в интервале глубин 2164-4465 м, в песчаниках мелового и позднеюрского возраста. Запасы месторождения оцениваются около 90 млн. т нефти. В пределах банки уже выявлено 15 газовых и нефтяных месторождений (Терра-Нова, Бен-Невис, Хеброн, Южный Темпест и др.), суммарные запасы которых оценивают в 177 млн. м3 нефти и 150 млрд. м3 газа. В 1979 г. в этом районе была пробурена скважина на глубину 6103 м при глубине воды 1480 м.

Лабрадорская нефтегазоносная область находится между 55° и 60° с. ш., связана с рифтогенным трогом Найн. В области открыт ряд газовых и газоконденсатных месторождений - Бьярни, Гудрнч, Снорри и Хопдайл. Извлекаемые запасы области оцениваются в 1,4 млрд. м3 газа и 600 млн. т нефти.

К северу от Лабрадорского нефтегазоносного бассейна в Девисовом проливе в результате поискового бурения получены непромышленные притоки углеводородов.
Мексиканский нефтегазоносный бассейн (рис 3) Его площадь почти 2 млн. км2. По оценкам американских геологов, это единственное место Мирового океана, где целесообразно бурение скважин на нефть и газ глубиной более 7,5 км. На северном шельфе Мексиканского залива в 200 км от берега открыто более 130 нефтяных и 410 газовых месторождений с начальными извлекаемыми запасами более 1 млрд. т нефти и 2,33 трлн. м3 таза; в сумме почти 3 млрд. т углеводородов. Мощность осадочного чехла достигает здесь 17 км, в том числе 12 км приходится па дельтовые песчано-глинистые отложения кайнозоя, сформированные Палеомиссисипи. 85 % разведанных запасов нефти северного шельфа Мексиканского залива (Голф-Кост) связано с 27 месторождениями, расположенными па шельфе штатов Луизиана и Техас. Месторождения концентрируются в зоне погребенного Мнссисипского рифта, выраженного в рельефе дна каньоном. В водах Миссисипи - каньон глубиной 2292 м - пробурена самая глубоководная скважина залива, из которой можно добывать нефть. Большинство месторождений имеют извлекаемые запасы 200 млн. т нефти и 100 млрд. м3 газа. Здесь находится самое крупное на территории США (исключая Аляску) нефтяное скопление - Ист-Тексас, начальные извлекаемые запасы которого оценивались в 850 млн. т. Значительное число крупных залежей углеводородов выявлено и в прибрежной части залива: Бей-Марчанд, Тимбалиер-Бей, Бей-Кайю, Кейллу-Айленд, Соут-Пасс. Всего в пределах Галф-Коста (совместно с прилегающей сушей) открыто более 1500 месторождений с извлекаемыми запасами нефти - 7,7 млрд. т и газа - 4,3 трлн. м3.

Геофизическими работами установлено продолжение продуктивной зоны и глубоководную часть Мексиканского залива (Миссисипский подводный каньон), где при глубине моря 375 м открыто нефтяное месторождение Коньяк.

Перспективной считается антиклинальная зона Пердидо, расположенная в глубоководной впадине Сигсби на континентальном склоне Техаса.

В последние годы наряду со снижением добычи морской нефти в пределах побережья Галф-Кост увеличилась добыча газа. Всего на северном шельфе Мексиканского залива добыто почти 1 млрд. т нефти и 1,3 трлн. м3 газа, что составляет около 70% начальных извлекаемых запасов углеводородов этой акватории. На западном шельфе Мексиканского залива располагается экваториальная часть нефтегазоносного бассейна Тампико-Тукспаи. Регион характеризуется широким развитием ископаемых рифов, которые образуют гигантское кольцо («Золотой пояс»), западная часть которого находится на суше, а восточная - в акватории. Протяженность как сухопутной, так и морской системы рифов составляет 180 км при ширине до 3 км. Высота рифов около 1 -1,5 км, иногда достигает 2,5 км. В настоящее время морские рифы Золотого пояса дают в год почти 2 млн. т нефти. В северной части Золотого пояса находится самое крупное месторождение нефти этого региона - Аренке, извлекаемые запасы которого составляют 141 млн. т.
Начальные разведанные запасы западного шельфа Мексиканского залива оценивались в 300 млн. т нефти и 70 млрд. м3 газа, неоткрытые запасы - в 100 млн. т нефти и 30 млрд. м3 газа.

В юго-западной части Мексиканского залива находится шельф залива Кампече, где поисковые работы ведутся с 50-х годов прошлого столетия. Наиболее крупные месторождения - Чак, Нооч, и Акал расположены в пределах горстовидного поднятия Кантарел. Разработка месторождений Кантарел начата в 1979 г., Доказанные извлекаемые запасы месторождении оцениваются в 1,2 млрд. т нефти. Перспективны меловые и верхнеюрские комплексы. В непосредственной близости от месторождения Кантарел открыт еще ряд месторождений нефти (Бакай, Абкатун, Малуб и др.). Начальные извлекаемые запасы нефти и газа в заливе Кампече, включая глубоководную часть, оценивают от 5 до 10 млрд. т.

Высокие перспективы нефтегазоносности и у шельфов п-ов Юкатан и Флорида. Мощность осадков здесь 3-6 км. Однако пробуренные скважины пока не дали положительных результатов. Перспективна и глубоководная часть Мексиканского залива (впадина Сигсби).
Общие начальные потенциальные извлекаемые ресурсы Мексиканского залива оцениваются в 6,3 млрд. т нефти и 4,8 трлн. м3 газа. В пересчете на нефть это составит более 10 млрд. т углеводородов, в том числе 4,5 млрд. т в акватории США и 5,6 млрд. т в акватории Мексики.

Карибский нефтегазоносный бассейн. В пределах бассейна наибольшие концентрации углеводородов известны в заливе (лагуне) Маракайбо (Маракайбский нефтегазоносный суббассейн). Залив Маракайбо приурочен к одноименной межгорной впадине, окруженной горными хребтами Анд. Впадина имеет форму треугольника площадью 30 тыс. км2. Со стороны Карибского моря через узкий пролив морские воды вторгаются в пределы суши, образуя морскую лагуну-озеро с максимальной глубиной дна 250 м. Площадь ее 11,2 тыс. км2, что примерно составляет 1/3 площади всей впадины.

Регион характеризуется извлекаемыми запасами нефти более 7 млрд. т, причем почти 2/3 их (от 3,12 до 4,5 млрд. т) концентрируются в недрах нефтяного гиганта - месторождения Боливар Прибрежный (Боливар-Кост). Последнее располагается вдоль восточного берега Маракайбского озера, частично захватывая и прилегающую сушу. Размеры его 85 X (20-80) км, площадь - 3,5 тыс. км2. В состав гигантского месторождения входит несколько самостоятельных месторождений: Тиа-Хуана, Лагунилас, Бачакуэр, Мене Гранде, объединенных единым контуром нефтегазоносности. Водами лагуны перекрыто 4/5 площади месторождения, разработка которого осуществляется с помощью 4500 скважин.

На месторождении Боливар Прибрежный установлено более 200 залежей нефти самого различного типа, из которых в конце 70-х годов ежегодно добывалось до 85 млн. т нефти. Основные залежи (миоцен-олигоцен), которые дают до 80% добычи, находятся в интервале глубин 170-3400 м. Известны крупные залежи в эоценовых породах на глубине свыше 4 км.

К западу от Боливара Прибрежного в бассейне озера открыто еще два нефтяных гиганта - Лама и Ламар. Извлекаемые запасы месторождения Лама оцениваются в 285 млн. т Месторождение Ламар имеет извлекаемые запасы нефти 180 млн. т, а годовую добычу 6 млн. т. В акватории Маракайбского озера известны и более мелкие месторождения, которые, как правило, частично располагаются на суше. В последние годы в южной части бассейна выявлено еще одно месторождение легкой нефти с извлекаемыми запасами более 100 млн. т.

На южном шельфе Карибского моря значительные перспективы связывают с недрами Венесуэльского залива. Потенциальные ресурсы оцениваются в 800 млн. т нефти и 200 млрд. м3 газа. К западу от залива открыто два газовых месторождения. К востоку от него в пределах Колумбийского шельфа также установлена промышленная газоносность. Перспективны в нефтегазовом отношении шельфы Панамы и Никарагуа.
В пределах Антильской складчатой зоны выявлено несколько мелких нефтяных месторождении (о. Барбадос).

На атлантической окраине Карибского бассейна находится Тринидатский нефтегазоносный суббассейн, охватывающий залив Парна, о. Тринидад и его атлантический шельф. В пределах акватории уже открыто свыше 30 месторождений углеводородов с извлекаемыми запасами нефти 181 млн. т и газа 282 млрд. м3.

Средиземноморские нефтегазоносные бассейны располагаются в западной и восточной частях Средиземного моря, общая площадь которого 2,5 млн. км2. Из них 529 тыс. км2 приходится на шельф (до 200 м), 531 тыс. км2 - на континентальный склон (от 200 до 1000 м) и 1440 тыс. км2 - на глубоководные области. По особенностям регионального тектонического строения Средиземное море распадается па две тектонические области: Западно-Средиземноморскую и Восточно-Средиземноморскую. Геофизическими работами установлено существование в северной части Средиземного моря зоны субдукции, фиксирующей погружение Африканской литосферной плиты под Европейский континент. К этой зоне приурочены зоны землетрясений и действующие вулканы.

3ападно - Средиземноморский нефтегазоносный бассейн располагается на опущенном блоке Западно-Европейской герцинской платформы. Область окружена альпийскими складчатыми сооружениями Пиренеев и Атласа. В Западно-Средиземноморском нефтегазоносном бассейне месторождения углеводородов выявлены только на шельфе. Испании - в Валенсийском рифте шириной до 10 км. Здесь установлено восемь нефтяных месторождений Месторождения сравнительно мелкие; запасы их в пределах первых десятков миллиардов тонн. Также разработаны пять месторождений: Ампоста-Марино, Касабланка, Кастелон, Дорадо и Таррако с начальными извлекаемыми запасами около 70 млн. т нефти и 20 млрд. м3 газа. Более половины текущей добычи нефти приходится па месторождение Касабланка с запасами 11,5 млн. т.

Адриатический нефтегазоносный бассейн. Первые газовые месторождения открыты в начале 60-х годов недалеко от г. Равенна (Равенна-Маре, Равенна-Маре-Зюд, Порто-Корсини-Маре и Чезатино-Маре). Запасы месторождений 20-30 млрд. м3. Позже выявлены мелкие нефтяные месторождения. Всего на адриатическом шельфе Италии открыто свыше 40 газовых месторождений с начальными доказанными запасами более 160 млрд. м3.

Восточно-Средиземноморский (Сицилийско-Тунисский) нефтегазоносный бассейн расположен на Мальтийской плите древней Африканской платформы.
На шельфе Сицилии выявлено несколько месторождений нефти: Джела, Перла, Мила, Вега, Нилде. На шельфе Туниса также выявлено несколько месторождений нефти и газа. Наиболее крупное месторождение Ашмардит имеет запасы нефти 103 млн. т и газа 31 млрд. м3. В дельте р. Нил (Египет) открыто несколько газовых месторождений на глубине 2,4 - 2,6 км (месторождения Лбу-Кир, Абу-Мади, Эль-Темзах и др.) и нефтяное месторождение Эль-Тина. Глубина моря около 10 м.

Всего в Средиземном море выявлено свыше 40 нефтяных и 60 газовых месторождений с разведанными извлекаемыми запасами 500 млн. т нефти и более 400 млрд. м3 газа. Общий начальный углеводородный потенциал Средиземного моря оценивается в 1,5 млрд. т нефти и 1 трлн. м3 газа, или около 2,5 млрд. т углеводородного сырья.

Южно-Каспийский нефтегазоносный бассейн охватывает южную часть Общая площадь провинции - 250 тыс. км2, из них 145 тыс. км скрыто под водами Южного Каспия. Месторождения нефти и газа открыты как на Апшеронском, так и па Туркменском шельфах. Глубина их залегания 2-3 км. Самая глубокая нефтяная залежь установлена па площади Сангачлы-море (5240 м), а самая глубокая газовая залежь - на площади Булла-море (5203 м). Всего в провинции открыто более 50 нефтегазовых и свыше 20 газовых и газоконденсатных месторождений при глубине воды до 120 м.

Разработку морских месторождений на Апшеронском шельфе ведут со свайных оснований с 1923 г. Наиболее известный морской промысел - Нефтяные камни.